File size: 5,209 Bytes
749745d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved.
import math
import torch
import torch.nn.functional as F
from torch import nn

from maskrcnn_benchmark.modeling import registry
from maskrcnn_benchmark.modeling.box_coder import BoxCoder
from .loss import make_focal_loss_evaluator
from .anchor_generator import make_anchor_generator_complex
from .inference import make_retina_postprocessor


@registry.RPN_HEADS.register("RetinaNetHead")
class RetinaNetHead(torch.nn.Module):
    """

    Adds a RetinNet head with classification and regression heads

    """

    def __init__(self, cfg):
        """

        Arguments:

            in_channels (int): number of channels of the input feature

            num_anchors (int): number of anchors to be predicted

        """
        super(RetinaNetHead, self).__init__()
        # TODO: Implement the sigmoid version first.
        num_classes = cfg.MODEL.RETINANET.NUM_CLASSES - 1
        in_channels = cfg.MODEL.BACKBONE.OUT_CHANNELS
        if cfg.MODEL.RPN.USE_FPN:
            num_anchors = len(cfg.MODEL.RPN.ASPECT_RATIOS) * cfg.MODEL.RPN.SCALES_PER_OCTAVE
        else:
            num_anchors = len(cfg.MODEL.RPN.ASPECT_RATIOS) * len(cfg.MODEL.RPN.ANCHOR_SIZES)

        cls_tower = []
        bbox_tower = []
        for i in range(cfg.MODEL.RETINANET.NUM_CONVS):
            cls_tower.append(nn.Conv2d(in_channels, in_channels, kernel_size=3, stride=1, padding=1))
            cls_tower.append(nn.ReLU())
            bbox_tower.append(nn.Conv2d(in_channels, in_channels, kernel_size=3, stride=1, padding=1))
            bbox_tower.append(nn.ReLU())

        self.add_module("cls_tower", nn.Sequential(*cls_tower))
        self.add_module("bbox_tower", nn.Sequential(*bbox_tower))
        self.cls_logits = nn.Conv2d(in_channels, num_anchors * num_classes, kernel_size=3, stride=1, padding=1)
        self.bbox_pred = nn.Conv2d(in_channels, num_anchors * 4, kernel_size=3, stride=1, padding=1)

        # Initialization
        for modules in [self.cls_tower, self.bbox_tower, self.cls_logits, self.bbox_pred]:
            for l in modules.modules():
                if isinstance(l, nn.Conv2d):
                    torch.nn.init.normal_(l.weight, std=0.01)
                    torch.nn.init.constant_(l.bias, 0)

        # retinanet_bias_init
        prior_prob = cfg.MODEL.RETINANET.PRIOR_PROB
        bias_value = -math.log((1 - prior_prob) / prior_prob)
        torch.nn.init.constant_(self.cls_logits.bias, bias_value)

    def forward(self, x):
        logits = []
        bbox_reg = []
        for feature in x:
            logits.append(self.cls_logits(self.cls_tower(feature)))
            bbox_reg.append(self.bbox_pred(self.bbox_tower(feature)))
        return logits, bbox_reg


class RetinaNetModule(torch.nn.Module):
    """

    Module for RetinaNet computation. Takes feature maps from the backbone and

    RetinaNet outputs and losses. Only Test on FPN now.

    """

    def __init__(self, cfg):
        super(RetinaNetModule, self).__init__()

        self.cfg = cfg.clone()

        anchor_generator = make_anchor_generator_complex(cfg)
        head = RetinaNetHead(cfg)

        box_coder = BoxCoder(weights=(10.0, 10.0, 5.0, 5.0))

        box_selector_test = make_retina_postprocessor(cfg, box_coder, is_train=False)

        loss_evaluator = make_focal_loss_evaluator(cfg, box_coder)

        self.anchor_generator = anchor_generator
        self.head = head
        self.box_selector_test = box_selector_test
        self.loss_evaluator = loss_evaluator

    def forward(self, images, features, targets=None):
        """

        Arguments:

            images (ImageList): images for which we want to compute the predictions

            features (list[Tensor]): features computed from the images that are

                used for computing the predictions. Each tensor in the list

                correspond to different feature levels

            targets (list[BoxList): ground-truth boxes present in the image (optional)



        Returns:

            boxes (list[BoxList]): the predicted boxes from the RPN, one BoxList per

                image.

            losses (dict[Tensor]): the losses for the model during training. During

                testing, it is an empty dict.

        """
        box_cls, box_regression = self.head(features)
        anchors = self.anchor_generator(images, features)

        if self.training:
            return self._forward_train(anchors, box_cls, box_regression, targets)
        else:
            return self._forward_test(anchors, box_cls, box_regression)

    def _forward_train(self, anchors, box_cls, box_regression, targets):

        loss_box_cls, loss_box_reg = self.loss_evaluator(anchors, box_cls, box_regression, targets)
        losses = {
            "loss_retina_cls": loss_box_cls,
            "loss_retina_reg": loss_box_reg,
        }
        return anchors, losses

    def _forward_test(self, anchors, box_cls, box_regression):
        boxes = self.box_selector_test(anchors, box_cls, box_regression)
        return boxes, {}