Spaces:
Sleeping
Sleeping
File size: 8,396 Bytes
749745d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 |
import math
import torch
import torch.nn.functional as F
from torch import nn
from .inference import make_atss_postprocessor
from .loss import make_atss_loss_evaluator
from maskrcnn_benchmark.structures.boxlist_ops import cat_boxlist
from maskrcnn_benchmark.layers import Scale, DFConv2d, DYReLU, SELayer
from .anchor_generator import make_anchor_generator_complex
class BoxCoder(object):
def __init__(self, cfg):
self.cfg = cfg
def encode(self, gt_boxes, anchors):
TO_REMOVE = 1 # TODO remove
ex_widths = anchors[:, 2] - anchors[:, 0] + TO_REMOVE
ex_heights = anchors[:, 3] - anchors[:, 1] + TO_REMOVE
ex_ctr_x = (anchors[:, 2] + anchors[:, 0]) / 2
ex_ctr_y = (anchors[:, 3] + anchors[:, 1]) / 2
gt_widths = gt_boxes[:, 2] - gt_boxes[:, 0] + TO_REMOVE
gt_heights = gt_boxes[:, 3] - gt_boxes[:, 1] + TO_REMOVE
gt_ctr_x = (gt_boxes[:, 2] + gt_boxes[:, 0]) / 2
gt_ctr_y = (gt_boxes[:, 3] + gt_boxes[:, 1]) / 2
wx, wy, ww, wh = (10.0, 10.0, 5.0, 5.0)
targets_dx = wx * (gt_ctr_x - ex_ctr_x) / ex_widths
targets_dy = wy * (gt_ctr_y - ex_ctr_y) / ex_heights
targets_dw = ww * torch.log(gt_widths / ex_widths)
targets_dh = wh * torch.log(gt_heights / ex_heights)
targets = torch.stack((targets_dx, targets_dy, targets_dw, targets_dh), dim=1)
return targets
def decode(self, preds, anchors):
anchors = anchors.to(preds.dtype)
TO_REMOVE = 1 # TODO remove
widths = anchors[:, 2] - anchors[:, 0] + TO_REMOVE
heights = anchors[:, 3] - anchors[:, 1] + TO_REMOVE
ctr_x = (anchors[:, 2] + anchors[:, 0]) / 2
ctr_y = (anchors[:, 3] + anchors[:, 1]) / 2
wx, wy, ww, wh = (10.0, 10.0, 5.0, 5.0)
dx = preds[:, 0::4] / wx
dy = preds[:, 1::4] / wy
dw = preds[:, 2::4] / ww
dh = preds[:, 3::4] / wh
# Prevent sending too large values into torch.exp()
dw = torch.clamp(dw, max=math.log(1000.0 / 16))
dh = torch.clamp(dh, max=math.log(1000.0 / 16))
pred_ctr_x = dx * widths[:, None] + ctr_x[:, None]
pred_ctr_y = dy * heights[:, None] + ctr_y[:, None]
pred_w = torch.exp(dw) * widths[:, None]
pred_h = torch.exp(dh) * heights[:, None]
pred_boxes = torch.zeros_like(preds)
pred_boxes[:, 0::4] = pred_ctr_x - 0.5 * (pred_w - 1)
pred_boxes[:, 1::4] = pred_ctr_y - 0.5 * (pred_h - 1)
pred_boxes[:, 2::4] = pred_ctr_x + 0.5 * (pred_w - 1)
pred_boxes[:, 3::4] = pred_ctr_y + 0.5 * (pred_h - 1)
return pred_boxes
class ATSSHead(torch.nn.Module):
def __init__(self, cfg):
super(ATSSHead, self).__init__()
self.cfg = cfg
num_classes = cfg.MODEL.ATSS.NUM_CLASSES - 1
num_anchors = len(cfg.MODEL.RPN.ASPECT_RATIOS) * cfg.MODEL.RPN.SCALES_PER_OCTAVE
in_channels = cfg.MODEL.BACKBONE.OUT_CHANNELS
channels = cfg.MODEL.ATSS.CHANNELS
use_gn = cfg.MODEL.ATSS.USE_GN
use_bn = cfg.MODEL.ATSS.USE_BN
use_dcn_in_tower = cfg.MODEL.ATSS.USE_DFCONV
use_dyrelu = cfg.MODEL.ATSS.USE_DYRELU
use_se = cfg.MODEL.ATSS.USE_SE
cls_tower = []
bbox_tower = []
for i in range(cfg.MODEL.ATSS.NUM_CONVS):
if use_dcn_in_tower and i == cfg.MODEL.ATSS.NUM_CONVS - 1:
conv_func = DFConv2d
else:
conv_func = nn.Conv2d
cls_tower.append(
conv_func(in_channels if i == 0 else channels, channels, kernel_size=3, stride=1, padding=1, bias=True)
)
if use_gn:
cls_tower.append(nn.GroupNorm(32, channels))
if use_bn:
cls_tower.append(nn.BatchNorm2d(channels))
if use_se:
cls_tower.append(SELayer(channels))
if use_dyrelu:
cls_tower.append(DYReLU(channels, channels))
else:
cls_tower.append(nn.ReLU())
bbox_tower.append(
conv_func(in_channels if i == 0 else channels, channels, kernel_size=3, stride=1, padding=1, bias=True)
)
if use_gn:
bbox_tower.append(nn.GroupNorm(32, channels))
if use_bn:
bbox_tower.append(nn.BatchNorm2d(channels))
if use_se:
bbox_tower.append(SELayer(channels))
if use_dyrelu:
bbox_tower.append(DYReLU(channels, channels))
else:
bbox_tower.append(nn.ReLU())
self.add_module("cls_tower", nn.Sequential(*cls_tower))
self.add_module("bbox_tower", nn.Sequential(*bbox_tower))
self.cls_logits = nn.Conv2d(channels, num_anchors * num_classes, kernel_size=3, stride=1, padding=1)
self.bbox_pred = nn.Conv2d(channels, num_anchors * 4, kernel_size=3, stride=1, padding=1)
self.centerness = nn.Conv2d(channels, num_anchors * 1, kernel_size=3, stride=1, padding=1)
# initialization
for modules in [self.cls_tower, self.bbox_tower, self.cls_logits, self.bbox_pred, self.centerness]:
for l in modules.modules():
if isinstance(l, nn.Conv2d):
torch.nn.init.normal_(l.weight, std=0.01)
torch.nn.init.constant_(l.bias, 0)
# initialize the bias for focal loss
prior_prob = cfg.MODEL.ATSS.PRIOR_PROB
bias_value = -math.log((1 - prior_prob) / prior_prob)
torch.nn.init.constant_(self.cls_logits.bias, bias_value)
self.scales = nn.ModuleList([Scale(init_value=1.0) for _ in range(5)])
def forward(self, x):
logits = []
bbox_reg = []
centerness = []
for l, feature in enumerate(x):
cls_tower = self.cls_tower(feature)
box_tower = self.bbox_tower(feature)
logits.append(self.cls_logits(cls_tower))
bbox_pred = self.scales[l](self.bbox_pred(box_tower))
bbox_reg.append(bbox_pred)
centerness.append(self.centerness(box_tower))
return logits, bbox_reg, centerness
class ATSSModule(torch.nn.Module):
def __init__(self, cfg):
super(ATSSModule, self).__init__()
self.cfg = cfg
self.head = ATSSHead(cfg)
box_coder = BoxCoder(cfg)
self.loss_evaluator = make_atss_loss_evaluator(cfg, box_coder)
self.box_selector_train = make_atss_postprocessor(cfg, box_coder, is_train=True)
self.box_selector_test = make_atss_postprocessor(cfg, box_coder, is_train=False)
self.anchor_generator = make_anchor_generator_complex(cfg)
def forward(self, images, features, targets=None):
box_cls, box_regression, centerness = self.head(features)
anchors = self.anchor_generator(images, features)
if self.training:
return self._forward_train(box_cls, box_regression, centerness, targets, anchors)
else:
return self._forward_test(box_cls, box_regression, centerness, anchors)
def _forward_train(self, box_cls, box_regression, centerness, targets, anchors):
loss_box_cls, loss_box_reg, loss_centerness = self.loss_evaluator(
box_cls, box_regression, centerness, targets, anchors
)
losses = {"loss_cls": loss_box_cls, "loss_reg": loss_box_reg, "loss_centerness": loss_centerness}
if self.cfg.MODEL.RPN_ONLY:
return None, losses
else:
boxes = self.box_selector_train(box_cls, box_regression, centerness, anchors)
train_boxes = []
for b, a in zip(boxes, anchors):
a = cat_boxlist(a)
b.add_field("visibility", torch.ones(b.bbox.shape[0], dtype=torch.bool, device=b.bbox.device))
del b.extra_fields["scores"]
del b.extra_fields["labels"]
train_boxes.append(cat_boxlist([b, a]))
return train_boxes, losses
def _forward_test(self, box_cls, box_regression, centerness, anchors):
boxes = self.box_selector_test(box_cls, box_regression, centerness, anchors)
return boxes, {}
|