Spaces:
Sleeping
Sleeping
File size: 15,281 Bytes
749745d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 |
"""
FBNet model builder
"""
from __future__ import absolute_import, division, print_function, unicode_literals
import copy
import logging
import math
from collections import OrderedDict
import torch
import torch.nn as nn
from torch.nn import BatchNorm2d, SyncBatchNorm
from maskrcnn_benchmark.layers import Conv2d, interpolate
from maskrcnn_benchmark.layers import NaiveSyncBatchNorm2d, FrozenBatchNorm2d
from maskrcnn_benchmark.layers.misc import _NewEmptyTensorOp
logger = logging.getLogger(__name__)
def _py2_round(x):
return math.floor(x + 0.5) if x >= 0.0 else math.ceil(x - 0.5)
def _get_divisible_by(num, divisible_by, min_val):
ret = int(num)
if divisible_by > 0 and num % divisible_by != 0:
ret = int((_py2_round(num / divisible_by) or min_val) * divisible_by)
return ret
class Identity(nn.Module):
def __init__(self, C_in, C_out, stride):
super(Identity, self).__init__()
self.conv = (
ConvBNRelu(
C_in,
C_out,
kernel=1,
stride=stride,
pad=0,
no_bias=1,
use_relu="relu",
bn_type="bn",
)
if C_in != C_out or stride != 1
else None
)
def forward(self, x):
if self.conv:
out = self.conv(x)
else:
out = x
return out
class CascadeConv3x3(nn.Sequential):
def __init__(self, C_in, C_out, stride):
assert stride in [1, 2]
ops = [
Conv2d(C_in, C_in, 3, stride, 1, bias=False),
BatchNorm2d(C_in),
nn.ReLU(inplace=True),
Conv2d(C_in, C_out, 3, 1, 1, bias=False),
BatchNorm2d(C_out),
]
super(CascadeConv3x3, self).__init__(*ops)
self.res_connect = (stride == 1) and (C_in == C_out)
def forward(self, x):
y = super(CascadeConv3x3, self).forward(x)
if self.res_connect:
y += x
return y
class Shift(nn.Module):
def __init__(self, C, kernel_size, stride, padding):
super(Shift, self).__init__()
self.C = C
kernel = torch.zeros((C, 1, kernel_size, kernel_size), dtype=torch.float32)
ch_idx = 0
assert stride in [1, 2]
self.stride = stride
self.padding = padding
self.kernel_size = kernel_size
self.dilation = 1
hks = kernel_size // 2
ksq = kernel_size**2
for i in range(kernel_size):
for j in range(kernel_size):
if i == hks and j == hks:
num_ch = C // ksq + C % ksq
else:
num_ch = C // ksq
kernel[ch_idx : ch_idx + num_ch, 0, i, j] = 1
ch_idx += num_ch
self.register_parameter("bias", None)
self.kernel = nn.Parameter(kernel, requires_grad=False)
def forward(self, x):
if x.numel() > 0:
return nn.functional.conv2d(
x,
self.kernel,
self.bias,
(self.stride, self.stride),
(self.padding, self.padding),
self.dilation,
self.C, # groups
)
output_shape = [
(i + 2 * p - (di * (k - 1) + 1)) // d + 1
for i, p, di, k, d in zip(
x.shape[-2:],
(self.padding, self.dilation),
(self.dilation, self.dilation),
(self.kernel_size, self.kernel_size),
(self.stride, self.stride),
)
]
output_shape = [x.shape[0], self.C] + output_shape
return _NewEmptyTensorOp.apply(x, output_shape)
class ShiftBlock5x5(nn.Sequential):
def __init__(self, C_in, C_out, expansion, stride):
assert stride in [1, 2]
self.res_connect = (stride == 1) and (C_in == C_out)
C_mid = _get_divisible_by(C_in * expansion, 8, 8)
ops = [
# pw
Conv2d(C_in, C_mid, 1, 1, 0, bias=False),
BatchNorm2d(C_mid),
nn.ReLU(inplace=True),
# shift
Shift(C_mid, 5, stride, 2),
# pw-linear
Conv2d(C_mid, C_out, 1, 1, 0, bias=False),
BatchNorm2d(C_out),
]
super(ShiftBlock5x5, self).__init__(*ops)
def forward(self, x):
y = super(ShiftBlock5x5, self).forward(x)
if self.res_connect:
y += x
return y
class ChannelShuffle(nn.Module):
def __init__(self, groups):
super(ChannelShuffle, self).__init__()
self.groups = groups
def forward(self, x):
"""Channel shuffle: [N,C,H,W] -> [N,g,C/g,H,W] -> [N,C/g,g,H,w] -> [N,C,H,W]"""
N, C, H, W = x.size()
g = self.groups
assert C % g == 0, "Incompatible group size {} for input channel {}".format(g, C)
return x.view(N, g, int(C / g), H, W).permute(0, 2, 1, 3, 4).contiguous().view(N, C, H, W)
class ConvBNRelu(nn.Sequential):
def __init__(
self, input_depth, output_depth, kernel, stride, pad, no_bias, use_relu, bn_type, group=1, *args, **kwargs
):
super(ConvBNRelu, self).__init__()
assert use_relu in ["relu", None]
if isinstance(bn_type, (list, tuple)):
assert len(bn_type) == 2
assert bn_type[0] == "gn"
gn_group = bn_type[1]
bn_type = bn_type[0]
assert bn_type in ["bn", "nsbn", "sbn", "af", "gn", None]
assert stride in [1, 2, 4]
op = Conv2d(
input_depth,
output_depth,
kernel_size=kernel,
stride=stride,
padding=pad,
bias=not no_bias,
groups=group,
*args,
**kwargs
)
nn.init.kaiming_normal_(op.weight, mode="fan_out", nonlinearity="relu")
if op.bias is not None:
nn.init.constant_(op.bias, 0.0)
self.add_module("conv", op)
if bn_type == "bn":
bn_op = BatchNorm2d(output_depth)
elif bn_type == "sbn":
bn_op = SyncBatchNorm(output_depth)
elif bn_type == "nsbn":
bn_op = NaiveSyncBatchNorm2d(output_depth)
elif bn_type == "gn":
bn_op = nn.GroupNorm(num_groups=gn_group, num_channels=output_depth)
elif bn_type == "af":
bn_op = FrozenBatchNorm2d(output_depth)
if bn_type is not None:
self.add_module("bn", bn_op)
if use_relu == "relu":
self.add_module("relu", nn.ReLU(inplace=True))
class SEModule(nn.Module):
reduction = 4
def __init__(self, C):
super(SEModule, self).__init__()
mid = max(C // self.reduction, 8)
conv1 = Conv2d(C, mid, 1, 1, 0)
conv2 = Conv2d(mid, C, 1, 1, 0)
self.op = nn.Sequential(nn.AdaptiveAvgPool2d(1), conv1, nn.ReLU(inplace=True), conv2, nn.Sigmoid())
def forward(self, x):
return x * self.op(x)
class Upsample(nn.Module):
def __init__(self, scale_factor, mode, align_corners=None):
super(Upsample, self).__init__()
self.scale = scale_factor
self.mode = mode
self.align_corners = align_corners
def forward(self, x):
return interpolate(x, scale_factor=self.scale, mode=self.mode, align_corners=self.align_corners)
def _get_upsample_op(stride):
assert (
stride in [1, 2, 4]
or stride in [-1, -2, -4]
or (isinstance(stride, tuple) and all(x in [-1, -2, -4] for x in stride))
)
scales = stride
ret = None
if isinstance(stride, tuple) or stride < 0:
scales = [-x for x in stride] if isinstance(stride, tuple) else -stride
stride = 1
ret = Upsample(scale_factor=scales, mode="nearest", align_corners=None)
return ret, stride
class IRFBlock(nn.Module):
def __init__(
self,
input_depth,
output_depth,
expansion,
stride,
bn_type="bn",
kernel=3,
width_divisor=1,
shuffle_type=None,
pw_group=1,
se=False,
cdw=False,
dw_skip_bn=False,
dw_skip_relu=False,
):
super(IRFBlock, self).__init__()
assert kernel in [1, 3, 5, 7], kernel
self.use_res_connect = stride == 1 and input_depth == output_depth
self.output_depth = output_depth
mid_depth = int(input_depth * expansion)
mid_depth = _get_divisible_by(mid_depth, width_divisor, width_divisor)
# pw
self.pw = ConvBNRelu(
input_depth,
mid_depth,
kernel=1,
stride=1,
pad=0,
no_bias=1,
use_relu="relu",
bn_type=bn_type,
group=pw_group,
)
# negative stride to do upsampling
self.upscale, stride = _get_upsample_op(stride)
# dw
if kernel == 1:
self.dw = nn.Sequential()
elif cdw:
dw1 = ConvBNRelu(
mid_depth,
mid_depth,
kernel=kernel,
stride=stride,
pad=(kernel // 2),
group=mid_depth,
no_bias=1,
use_relu="relu",
bn_type=bn_type,
)
dw2 = ConvBNRelu(
mid_depth,
mid_depth,
kernel=kernel,
stride=1,
pad=(kernel // 2),
group=mid_depth,
no_bias=1,
use_relu="relu" if not dw_skip_relu else None,
bn_type=bn_type if not dw_skip_bn else None,
)
self.dw = nn.Sequential(OrderedDict([("dw1", dw1), ("dw2", dw2)]))
else:
self.dw = ConvBNRelu(
mid_depth,
mid_depth,
kernel=kernel,
stride=stride,
pad=(kernel // 2),
group=mid_depth,
no_bias=1,
use_relu="relu" if not dw_skip_relu else None,
bn_type=bn_type if not dw_skip_bn else None,
)
# pw-linear
self.pwl = ConvBNRelu(
mid_depth,
output_depth,
kernel=1,
stride=1,
pad=0,
no_bias=1,
use_relu=None,
bn_type=bn_type,
group=pw_group,
)
self.shuffle_type = shuffle_type
if shuffle_type is not None:
self.shuffle = ChannelShuffle(pw_group)
self.se4 = SEModule(output_depth) if se else nn.Sequential()
self.output_depth = output_depth
def forward(self, x):
y = self.pw(x)
if self.shuffle_type == "mid":
y = self.shuffle(y)
if self.upscale is not None:
y = self.upscale(y)
y = self.dw(y)
y = self.pwl(y)
if self.use_res_connect:
y += x
y = self.se4(y)
return y
skip = lambda C_in, C_out, stride, **kwargs: Identity(C_in, C_out, stride)
basic_block = lambda C_in, C_out, stride, **kwargs: CascadeConv3x3(C_in, C_out, stride)
# layer search 2
ir_k3_e1 = lambda C_in, C_out, stride, **kwargs: IRFBlock(C_in, C_out, 1, stride, kernel=3, **kwargs)
ir_k3_e3 = lambda C_in, C_out, stride, **kwargs: IRFBlock(C_in, C_out, 3, stride, kernel=3, **kwargs)
ir_k3_e6 = lambda C_in, C_out, stride, **kwargs: IRFBlock(C_in, C_out, 6, stride, kernel=3, **kwargs)
ir_k3_s4 = lambda C_in, C_out, stride, **kwargs: IRFBlock(
C_in, C_out, 4, stride, kernel=3, shuffle_type="mid", pw_group=4, **kwargs
)
ir_k5_e1 = lambda C_in, C_out, stride, **kwargs: IRFBlock(C_in, C_out, 1, stride, kernel=5, **kwargs)
ir_k5_e3 = lambda C_in, C_out, stride, **kwargs: IRFBlock(C_in, C_out, 3, stride, kernel=5, **kwargs)
ir_k5_e6 = lambda C_in, C_out, stride, **kwargs: IRFBlock(C_in, C_out, 6, stride, kernel=5, **kwargs)
ir_k5_s4 = lambda C_in, C_out, stride, **kwargs: IRFBlock(
C_in, C_out, 4, stride, kernel=5, shuffle_type="mid", pw_group=4, **kwargs
)
# layer search se
ir_k3_e1_se = lambda C_in, C_out, stride, **kwargs: IRFBlock(C_in, C_out, 1, stride, kernel=3, se=True, **kwargs)
ir_k3_e3_se = lambda C_in, C_out, stride, **kwargs: IRFBlock(C_in, C_out, 3, stride, kernel=3, se=True, **kwargs)
ir_k3_e6_se = lambda C_in, C_out, stride, **kwargs: IRFBlock(C_in, C_out, 6, stride, kernel=3, se=True, **kwargs)
ir_k3_s4_se = lambda C_in, C_out, stride, **kwargs: IRFBlock(
C_in, C_out, 4, stride, kernel=3, shuffle_type=mid, pw_group=4, se=True, **kwargs
)
ir_k5_e1_se = lambda C_in, C_out, stride, **kwargs: IRFBlock(C_in, C_out, 1, stride, kernel=5, se=True, **kwargs)
ir_k5_e3_se = lambda C_in, C_out, stride, **kwargs: IRFBlock(C_in, C_out, 3, stride, kernel=5, se=True, **kwargs)
ir_k5_e6_se = lambda C_in, C_out, stride, **kwargs: IRFBlock(C_in, C_out, 6, stride, kernel=5, se=True, **kwargs)
ir_k5_s4_se = lambda C_in, C_out, stride, **kwargs: IRFBlock(
C_in, C_out, 4, stride, kernel=5, shuffle_type="mid", pw_group=4, se=True, **kwargs
)
# layer search 3 (in addition to layer search 2)
ir_k3_s2 = lambda C_in, C_out, stride, **kwargs: IRFBlock(
C_in, C_out, 1, stride, kernel=3, shuffle_type="mid", pw_group=2, **kwargs
)
ir_k5_s2 = lambda C_in, C_out, stride, **kwargs: IRFBlock(
C_in, C_out, 1, stride, kernel=5, shuffle_type="mid", pw_group=2, **kwargs
)
ir_k3_s2_se = lambda C_in, C_out, stride, **kwargs: IRFBlock(
C_in, C_out, 1, stride, kernel=3, shuffle_type="mid", pw_group=2, se=True, **kwargs
)
ir_k5_s2_se = lambda C_in, C_out, stride, **kwargs: IRFBlock(
C_in, C_out, 1, stride, kernel=5, shuffle_type="mid", pw_group=2, se=True, **kwargs
)
# layer search 4 (in addition to layer search 3)
ir_k33_e1 = lambda C_in, C_out, stride, **kwargs: IRFBlock(C_in, C_out, 1, stride, kernel=3, cdw=True, **kwargs)
ir_k33_e3 = lambda C_in, C_out, stride, **kwargs: IRFBlock(C_in, C_out, 3, stride, kernel=3, cdw=True, **kwargs)
ir_k33_e6 = lambda C_in, C_out, stride, **kwargs: IRFBlock(C_in, C_out, 6, stride, kernel=3, cdw=True, **kwargs)
# layer search 5 (in addition to layer search 4)
ir_k7_e1 = lambda C_in, C_out, stride, **kwargs: IRFBlock(C_in, C_out, 1, stride, kernel=7, **kwargs)
ir_k7_e3 = lambda C_in, C_out, stride, **kwargs: IRFBlock(C_in, C_out, 3, stride, kernel=7, **kwargs)
ir_k7_e6 = lambda C_in, C_out, stride, **kwargs: IRFBlock(C_in, C_out, 6, stride, kernel=7, **kwargs)
ir_k7_sep_e1 = lambda C_in, C_out, stride, **kwargs: IRFBlock(C_in, C_out, 1, stride, kernel=7, cdw=True, **kwargs)
ir_k7_sep_e3 = lambda C_in, C_out, stride, **kwargs: IRFBlock(C_in, C_out, 3, stride, kernel=7, cdw=True, **kwargs)
ir_k7_sep_e6 = lambda C_in, C_out, stride, **kwargs: IRFBlock(C_in, C_out, 6, stride, kernel=7, cdw=True, **kwargs)
|