File size: 22,263 Bytes
749745d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
"""

    EfficientNet for ImageNet-1K, implemented in PyTorch.

    Original papers:

    - 'EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks,' https://arxiv.org/abs/1905.11946,

    - 'Adversarial Examples Improve Image Recognition,' https://arxiv.org/abs/1911.09665.

"""

import os
import math
import torch
import torch.nn as nn
import torch.nn.functional as F

from maskrcnn_benchmark.layers import SEBlock, swish


def round_channels(channels, divisor=8):
    """

    Round weighted channel number (make divisible operation).



    Parameters:

    ----------

    channels : int or float

        Original number of channels.

    divisor : int, default 8

        Alignment value.



    Returns

    -------

    int

        Weighted number of channels.

    """
    rounded_channels = max(int(channels + divisor / 2.0) // divisor * divisor, divisor)
    if float(rounded_channels) < 0.9 * channels:
        rounded_channels += divisor
    return rounded_channels


def calc_tf_padding(x, kernel_size, stride=1, dilation=1):
    """

    Calculate TF-same like padding size.



    Parameters:

    ----------

    x : tensor

        Input tensor.

    kernel_size : int

        Convolution window size.

    stride : int, default 1

        Strides of the convolution.

    dilation : int, default 1

        Dilation value for convolution layer.



    Returns

    -------

    tuple of 4 int

        The size of the padding.

    """
    height, width = x.size()[2:]
    oh = math.ceil(height / stride)
    ow = math.ceil(width / stride)
    pad_h = max((oh - 1) * stride + (kernel_size - 1) * dilation + 1 - height, 0)
    pad_w = max((ow - 1) * stride + (kernel_size - 1) * dilation + 1 - width, 0)
    return pad_h // 2, pad_h - pad_h // 2, pad_w // 2, pad_w - pad_w // 2


class ConvBlock(nn.Module):
    """

    Standard convolution block with Batch normalization and activation.



    Parameters:

    ----------

    in_channels : int

        Number of input channels.

    out_channels : int

        Number of output channels.

    kernel_size : int or tuple/list of 2 int

        Convolution window size.

    stride : int or tuple/list of 2 int

        Strides of the convolution.

    padding : int, or tuple/list of 2 int, or tuple/list of 4 int

        Padding value for convolution layer.

    dilation : int or tuple/list of 2 int, default 1

        Dilation value for convolution layer.

    groups : int, default 1

        Number of groups.

    bias : bool, default False

        Whether the layer uses a bias vector.

    use_bn : bool, default True

        Whether to use BatchNorm layer.

    bn_eps : float, default 1e-5

        Small float added to variance in Batch norm.

    activation : function or str or None, default nn.ReLU(inplace=True)

        Activation function or name of activation function.

    """

    def __init__(

        self,

        in_channels,

        out_channels,

        kernel_size,

        stride,

        padding,

        dilation=1,

        groups=1,

        bias=False,

        use_bn=True,

        bn_eps=1e-5,

        activation=nn.ReLU(inplace=True),

    ):
        super(ConvBlock, self).__init__()
        self.activate = activation is not None
        self.use_bn = use_bn
        self.use_pad = isinstance(padding, (list, tuple)) and (len(padding) == 4)

        if self.use_pad:
            self.pad = nn.ZeroPad2d(padding=padding)
            padding = 0
        self.conv = nn.Conv2d(
            in_channels=in_channels,
            out_channels=out_channels,
            kernel_size=kernel_size,
            stride=stride,
            padding=padding,
            dilation=dilation,
            groups=groups,
            bias=bias,
        )
        if self.use_bn:
            self.bn = nn.BatchNorm2d(num_features=out_channels, eps=bn_eps)
        if self.activate:
            self.activ = activation

    def forward(self, x):
        if self.use_pad:
            x = self.pad(x)
        x = self.conv(x)
        if self.use_bn:
            x = self.bn(x)
        if self.activate:
            x = self.activ(x)
        return x


def conv1x1_block(

    in_channels,

    out_channels,

    stride=1,

    padding=0,

    groups=1,

    bias=False,

    use_bn=True,

    bn_eps=1e-5,

    activation=nn.ReLU(inplace=True),

):
    """

    1x1 version of the standard convolution block.



    Parameters:

    ----------

    in_channels : int

        Number of input channels.

    out_channels : int

        Number of output channels.

    stride : int or tuple/list of 2 int, default 1

        Strides of the convolution.

    padding : int, or tuple/list of 2 int, or tuple/list of 4 int, default 0

        Padding value for convolution layer.

    groups : int, default 1

        Number of groups.

    bias : bool, default False

        Whether the layer uses a bias vector.

    use_bn : bool, default True

        Whether to use BatchNorm layer.

    bn_eps : float, default 1e-5

        Small float added to variance in Batch norm.

    activation : function or str or None, default nn.ReLU(inplace=True)

        Activation function or name of activation function.

    """
    return ConvBlock(
        in_channels=in_channels,
        out_channels=out_channels,
        kernel_size=1,
        stride=stride,
        padding=padding,
        groups=groups,
        bias=bias,
        use_bn=use_bn,
        bn_eps=bn_eps,
        activation=activation,
    )


def conv3x3_block(

    in_channels,

    out_channels,

    stride=1,

    padding=1,

    dilation=1,

    groups=1,

    bias=False,

    use_bn=True,

    bn_eps=1e-5,

    activation=nn.ReLU(inplace=True),

):
    """

    3x3 version of the standard convolution block.



    Parameters:

    ----------

    in_channels : int

        Number of input channels.

    out_channels : int

        Number of output channels.

    stride : int or tuple/list of 2 int, default 1

        Strides of the convolution.

    padding : int, or tuple/list of 2 int, or tuple/list of 4 int, default 1

        Padding value for convolution layer.

    dilation : int or tuple/list of 2 int, default 1

        Dilation value for convolution layer.

    groups : int, default 1

        Number of groups.

    bias : bool, default False

        Whether the layer uses a bias vector.

    use_bn : bool, default True

        Whether to use BatchNorm layer.

    bn_eps : float, default 1e-5

        Small float added to variance in Batch norm.

    activation : function or str or None, default nn.ReLU(inplace=True)

        Activation function or name of activation function.

    """
    return ConvBlock(
        in_channels=in_channels,
        out_channels=out_channels,
        kernel_size=3,
        stride=stride,
        padding=padding,
        dilation=dilation,
        groups=groups,
        bias=bias,
        use_bn=use_bn,
        bn_eps=bn_eps,
        activation=activation,
    )


def dwconv3x3_block(

    in_channels,

    out_channels,

    stride=1,

    padding=1,

    dilation=1,

    bias=False,

    bn_eps=1e-5,

    activation=nn.ReLU(inplace=True),

):
    """

    3x3 depthwise version of the standard convolution block.



    Parameters:

    ----------

    in_channels : int

        Number of input channels.

    out_channels : int

        Number of output channels.

    stride : int or tuple/list of 2 int, default 1

        Strides of the convolution.

    padding : int, or tuple/list of 2 int, or tuple/list of 4 int, default 1

        Padding value for convolution layer.

    dilation : int or tuple/list of 2 int, default 1

        Dilation value for convolution layer.

    bias : bool, default False

        Whether the layer uses a bias vector.

    bn_eps : float, default 1e-5

        Small float added to variance in Batch norm.

    activation : function or str or None, default nn.ReLU(inplace=True)

        Activation function or name of activation function.

    """
    return ConvBlock(
        in_channels=in_channels,
        out_channels=out_channels,
        kernel_size=3,
        stride=stride,
        padding=padding,
        dilation=dilation,
        groups=out_channels,
        bias=bias,
        use_bn=True,
        bn_eps=bn_eps,
        activation=activation,
    )


def dwconv5x5_block(

    in_channels,

    out_channels,

    stride=1,

    padding=2,

    dilation=1,

    bias=False,

    bn_eps=1e-5,

    activation=nn.ReLU(inplace=True),

):
    """

    5x5 depthwise version of the standard convolution block.



    Parameters:

    ----------

    in_channels : int

        Number of input channels.

    out_channels : int

        Number of output channels.

    stride : int or tuple/list of 2 int, default 1

        Strides of the convolution.

    padding : int, or tuple/list of 2 int, or tuple/list of 4 int, default 2

        Padding value for convolution layer.

    dilation : int or tuple/list of 2 int, default 1

        Dilation value for convolution layer.

    bias : bool, default False

        Whether the layer uses a bias vector.

    bn_eps : float, default 1e-5

        Small float added to variance in Batch norm.

    activation : function or str or None, default nn.ReLU(inplace=True)

        Activation function or name of activation function.

    """
    return ConvBlock(
        in_channels=in_channels,
        out_channels=out_channels,
        kernel_size=5,
        stride=stride,
        padding=padding,
        dilation=dilation,
        groups=out_channels,
        bias=bias,
        use_bn=True,
        bn_eps=bn_eps,
        activation=activation,
    )


class EffiDwsConvUnit(nn.Module):
    """

    EfficientNet specific depthwise separable convolution block/unit with BatchNorms and activations at each convolution

    layers.



    Parameters:

    ----------

    in_channels : int

        Number of input channels.

    out_channels : int

        Number of output channels.

    stride : int or tuple/list of 2 int

        Strides of the second convolution layer.

    bn_eps : float

        Small float added to variance in Batch norm.

    activation : str

        Name of activation function.

    tf_mode : bool

        Whether to use TF-like mode.

    """

    def __init__(self, in_channels, out_channels, stride, bn_eps, activation, tf_mode):
        super(EffiDwsConvUnit, self).__init__()
        self.tf_mode = tf_mode
        self.residual = (in_channels == out_channels) and (stride == 1)

        self.dw_conv = dwconv3x3_block(
            in_channels=in_channels,
            out_channels=in_channels,
            padding=(0 if tf_mode else 1),
            bn_eps=bn_eps,
            activation=activation,
        )
        self.se = SEBlock(channels=in_channels, reduction=4, mid_activation=activation)
        self.pw_conv = conv1x1_block(in_channels=in_channels, out_channels=out_channels, bn_eps=bn_eps, activation=None)

    def forward(self, x):
        if self.residual:
            identity = x
        if self.tf_mode:
            x = F.pad(x, pad=calc_tf_padding(x, kernel_size=3))
        x = self.dw_conv(x)
        x = self.se(x)
        x = self.pw_conv(x)
        if self.residual:
            x = x + identity
        return x


class EffiInvResUnit(nn.Module):
    """

    EfficientNet inverted residual unit.



    Parameters:

    ----------

    in_channels : int

        Number of input channels.

    out_channels : int

        Number of output channels.

    kernel_size : int or tuple/list of 2 int

        Convolution window size.

    stride : int or tuple/list of 2 int

        Strides of the second convolution layer.

    exp_factor : int

        Factor for expansion of channels.

    se_factor : int

        SE reduction factor for each unit.

    bn_eps : float

        Small float added to variance in Batch norm.

    activation : str

        Name of activation function.

    tf_mode : bool

        Whether to use TF-like mode.

    """

    def __init__(

        self, in_channels, out_channels, kernel_size, stride, exp_factor, se_factor, bn_eps, activation, tf_mode

    ):
        super(EffiInvResUnit, self).__init__()
        self.kernel_size = kernel_size
        self.stride = stride
        self.tf_mode = tf_mode
        self.residual = (in_channels == out_channels) and (stride == 1)
        self.use_se = se_factor > 0
        mid_channels = in_channels * exp_factor
        dwconv_block_fn = dwconv3x3_block if kernel_size == 3 else (dwconv5x5_block if kernel_size == 5 else None)

        self.conv1 = conv1x1_block(
            in_channels=in_channels, out_channels=mid_channels, bn_eps=bn_eps, activation=activation
        )
        self.conv2 = dwconv_block_fn(
            in_channels=mid_channels,
            out_channels=mid_channels,
            stride=stride,
            padding=(0 if tf_mode else (kernel_size // 2)),
            bn_eps=bn_eps,
            activation=activation,
        )
        if self.use_se:
            self.se = SEBlock(channels=mid_channels, reduction=(exp_factor * se_factor), mid_activation=activation)
        self.conv3 = conv1x1_block(in_channels=mid_channels, out_channels=out_channels, bn_eps=bn_eps, activation=None)

    def forward(self, x):
        if self.residual:
            identity = x
        x = self.conv1(x)
        if self.tf_mode:
            x = F.pad(x, pad=calc_tf_padding(x, kernel_size=self.kernel_size, stride=self.stride))
        x = self.conv2(x)
        if self.use_se:
            x = self.se(x)
        x = self.conv3(x)
        if self.residual:
            x = x + identity
        return x


class EffiInitBlock(nn.Module):
    """

    EfficientNet specific initial block.



    Parameters:

    ----------

    in_channels : int

        Number of input channels.

    out_channels : int

        Number of output channels.

    bn_eps : float

        Small float added to variance in Batch norm.

    activation : str

        Name of activation function.

    tf_mode : bool

        Whether to use TF-like mode.

    """

    def __init__(self, in_channels, out_channels, bn_eps, activation, tf_mode):
        super(EffiInitBlock, self).__init__()
        self.tf_mode = tf_mode

        self.conv = conv3x3_block(
            in_channels=in_channels,
            out_channels=out_channels,
            stride=2,
            padding=(0 if tf_mode else 1),
            bn_eps=bn_eps,
            activation=activation,
        )

    def forward(self, x):
        if self.tf_mode:
            x = F.pad(x, pad=calc_tf_padding(x, kernel_size=3, stride=2))
        x = self.conv(x)
        return x


class EfficientNet(nn.Module):
    """

    EfficientNet model from 'EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks,'

    https://arxiv.org/abs/1905.11946.



    Parameters:

    ----------

    channels : list of list of int

        Number of output channels for each unit.

    init_block_channels : int

        Number of output channels for initial unit.

    final_block_channels : int

        Number of output channels for the final block of the feature extractor.

    kernel_sizes : list of list of int

        Number of kernel sizes for each unit.

    strides_per_stage : list int

        Stride value for the first unit of each stage.

    expansion_factors : list of list of int

        Number of expansion factors for each unit.

    dropout_rate : float, default 0.2

        Fraction of the input units to drop. Must be a number between 0 and 1.

    tf_mode : bool, default False

        Whether to use TF-like mode.

    bn_eps : float, default 1e-5

        Small float added to variance in Batch norm.

    in_channels : int, default 3

        Number of input channels.

    in_size : tuple of two ints, default (224, 224)

        Spatial size of the expected input image.

    num_classes : int, default 1000

        Number of classification classes.

    """

    def __init__(

        self,

        cfg,

        channels,

        init_block_channels,

        kernel_sizes,

        strides_per_stage,

        expansion_factors,

        tf_mode=False,

        bn_eps=1e-5,

        in_channels=3,

    ):
        super(EfficientNet, self).__init__()
        activation = swish()

        self.out_channels = []
        self.features = nn.Sequential()
        self.stages = []
        stem = EffiInitBlock(
            in_channels=in_channels,
            out_channels=init_block_channels,
            bn_eps=bn_eps,
            activation=activation,
            tf_mode=tf_mode,
        )
        self.features.add_module("init_block", stem)
        self.stages.append(stem)

        in_channels = init_block_channels
        for i, channels_per_stage in enumerate(channels):
            kernel_sizes_per_stage = kernel_sizes[i]
            expansion_factors_per_stage = expansion_factors[i]
            stage = nn.Sequential()
            for j, out_channels in enumerate(channels_per_stage):
                kernel_size = kernel_sizes_per_stage[j]
                expansion_factor = expansion_factors_per_stage[j]
                stride = strides_per_stage[i] if (j == 0) else 1
                if i == 0:
                    stage.add_module(
                        "unit{}".format(j + 1),
                        EffiDwsConvUnit(
                            in_channels=in_channels,
                            out_channels=out_channels,
                            stride=stride,
                            bn_eps=bn_eps,
                            activation=activation,
                            tf_mode=tf_mode,
                        ),
                    )
                else:
                    stage.add_module(
                        "unit{}".format(j + 1),
                        EffiInvResUnit(
                            in_channels=in_channels,
                            out_channels=out_channels,
                            kernel_size=kernel_size,
                            stride=stride,
                            exp_factor=expansion_factor,
                            se_factor=4,
                            bn_eps=bn_eps,
                            activation=activation,
                            tf_mode=tf_mode,
                        ),
                    )
                in_channels = out_channels
            if i > 0:
                self.out_channels.append(out_channels)
            self.features.add_module("stage{}".format(i + 1), stage)
            self.stages.append(stage)
        # Optionally freeze (requires_grad=False) parts of the backbone
        self._freeze_backbone(cfg.MODEL.BACKBONE.FREEZE_CONV_BODY_AT)

    def _freeze_backbone(self, freeze_at):
        if freeze_at < 0:
            return
        for stage_index in range(freeze_at):
            m = self.stages[stage_index]
            for p in m.parameters():
                p.requires_grad = False

    def forward(self, x):
        res = []
        for i, stage in enumerate(self.stages):
            x = stage(x)
            if i > 1:
                res.append(x)
        return res


def get_efficientnet(cfg, version, tf_mode=True, bn_eps=1e-5, **kwargs):
    if version == "b0":
        depth_factor = 1.0
        width_factor = 1.0
    elif version == "b1":
        depth_factor = 1.1
        width_factor = 1.0
    elif version == "b2":
        depth_factor = 1.2
        width_factor = 1.1
    elif version == "b3":
        depth_factor = 1.4
        width_factor = 1.2
    elif version == "b4":
        depth_factor = 1.8
        width_factor = 1.4
    elif version == "b5":
        depth_factor = 2.2
        width_factor = 1.6
    elif version == "b6":
        depth_factor = 2.6
        width_factor = 1.8
    elif version == "b7":
        depth_factor = 3.1
        width_factor = 2.0
    elif version == "b8":
        depth_factor = 3.6
        width_factor = 2.2
    else:
        raise ValueError("Unsupported EfficientNet version {}".format(version))

    init_block_channels = 32
    layers = [1, 2, 2, 3, 3, 4, 1]
    downsample = [1, 1, 1, 1, 0, 1, 0]
    channels_per_layers = [16, 24, 40, 80, 112, 192, 320]
    expansion_factors_per_layers = [1, 6, 6, 6, 6, 6, 6]
    kernel_sizes_per_layers = [3, 3, 5, 3, 5, 5, 3]
    strides_per_stage = [1, 2, 2, 2, 1, 2, 1]

    layers = [int(math.ceil(li * depth_factor)) for li in layers]
    channels_per_layers = [round_channels(ci * width_factor) for ci in channels_per_layers]

    from functools import reduce

    channels = reduce(
        lambda x, y: x + [[y[0]] * y[1]] if y[2] != 0 else x[:-1] + [x[-1] + [y[0]] * y[1]],
        zip(channels_per_layers, layers, downsample),
        [],
    )
    kernel_sizes = reduce(
        lambda x, y: x + [[y[0]] * y[1]] if y[2] != 0 else x[:-1] + [x[-1] + [y[0]] * y[1]],
        zip(kernel_sizes_per_layers, layers, downsample),
        [],
    )
    expansion_factors = reduce(
        lambda x, y: x + [[y[0]] * y[1]] if y[2] != 0 else x[:-1] + [x[-1] + [y[0]] * y[1]],
        zip(expansion_factors_per_layers, layers, downsample),
        [],
    )
    strides_per_stage = reduce(
        lambda x, y: x + [[y[0]] * y[1]] if y[2] != 0 else x[:-1] + [x[-1] + [y[0]] * y[1]],
        zip(strides_per_stage, layers, downsample),
        [],
    )
    strides_per_stage = [si[0] for si in strides_per_stage]

    init_block_channels = round_channels(init_block_channels * width_factor)

    net = EfficientNet(
        cfg,
        channels=channels,
        init_block_channels=init_block_channels,
        kernel_sizes=kernel_sizes,
        strides_per_stage=strides_per_stage,
        expansion_factors=expansion_factors,
        tf_mode=tf_mode,
        bn_eps=bn_eps,
        **kwargs
    )

    return net