File size: 5,608 Bytes
749745d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved.
from bisect import bisect_right

import math
import torch


# FIXME ideally this would be achieved with a CombinedLRScheduler,
# separating MultiStepLR with WarmupLR
# but the current LRScheduler design doesn't allow it
class WarmupMultiStepLR(torch.optim.lr_scheduler._LRScheduler):
    def __init__(

        self,

        optimizer,

        milestones,

        gamma=0.1,

        warmup_factor=1.0 / 3,

        warmup_iters=500,

        warmup_method="linear",

        last_epoch=-1,

    ):
        if not list(milestones) == sorted(milestones):
            raise ValueError(
                "Milestones should be a list of" " increasing integers. Got {}",
                milestones,
            )

        if warmup_method not in ("constant", "linear"):
            raise ValueError("Only 'constant' or 'linear' warmup_method accepted" "got {}".format(warmup_method))
        self.milestones = milestones
        self.gamma = gamma
        self.warmup_factor = warmup_factor
        self.warmup_iters = warmup_iters
        self.warmup_method = warmup_method
        super(WarmupMultiStepLR, self).__init__(optimizer, last_epoch)

    def get_lr(self):
        warmup_factor = 1
        if self.last_epoch < self.warmup_iters:
            if self.warmup_method == "constant":
                warmup_factor = self.warmup_factor
            elif self.warmup_method == "linear":
                alpha = float(self.last_epoch) / self.warmup_iters
                warmup_factor = self.warmup_factor * (1 - alpha) + alpha
        return [
            base_lr * warmup_factor * self.gamma ** bisect_right(self.milestones, self.last_epoch)
            for base_lr in self.base_lrs
        ]


class WarmupCosineAnnealingLR(torch.optim.lr_scheduler._LRScheduler):
    def __init__(

        self,

        optimizer,

        max_iters,

        gamma=0.1,

        warmup_factor=1.0 / 3,

        warmup_iters=500,

        warmup_method="linear",

        eta_min=0,

        last_epoch=-1,

    ):

        if warmup_method not in ("constant", "linear"):
            raise ValueError("Only 'constant' or 'linear' warmup_method accepted" "got {}".format(warmup_method))
        self.max_iters = max_iters
        self.gamma = gamma
        self.warmup_factor = warmup_factor
        self.warmup_iters = warmup_iters
        self.warmup_method = warmup_method
        self.eta_min = eta_min
        super(WarmupCosineAnnealingLR, self).__init__(optimizer, last_epoch)

    def get_lr(self):
        warmup_factor = 1

        if self.last_epoch < self.warmup_iters:
            if self.warmup_method == "constant":
                warmup_factor = self.warmup_factor
            elif self.warmup_method == "linear":
                alpha = float(self.last_epoch) / self.warmup_iters
                warmup_factor = self.warmup_factor * (1 - alpha) + alpha
            return [base_lr * warmup_factor for base_lr in self.base_lrs]
        else:
            return [
                self.eta_min
                + (base_lr - self.eta_min)
                * (1 + math.cos(math.pi * (self.last_epoch - self.warmup_iters) / self.max_iters))
                / 2
                for base_lr in self.base_lrs
            ]


class WarmupReduceLROnPlateau(torch.optim.lr_scheduler.ReduceLROnPlateau):
    def __init__(

        self,

        optimizer,

        max_iters,

        gamma=0.1,

        warmup_factor=1.0 / 3,

        warmup_iters=500,

        warmup_method="linear",

        eta_min=0,

        last_epoch=-1,

        patience=5,

        verbose=False,

    ):

        if warmup_method not in ("constant", "linear"):
            raise ValueError("Only 'constant' or 'linear' warmup_method accepted" "got {}".format(warmup_method))
        self.warmup_factor = warmup_factor
        self.warmup_iters = warmup_iters
        self.warmup_method = warmup_method
        self.eta_min = eta_min

        if last_epoch == -1:
            for group in optimizer.param_groups:
                group.setdefault("initial_lr", group["lr"])
        else:
            for i, group in enumerate(optimizer.param_groups):
                if "initial_lr" not in group:
                    raise KeyError(
                        "param 'initial_lr' is not specified "
                        "in param_groups[{}] when resuming an optimizer".format(i)
                    )
        self.base_lrs = list(map(lambda group: group["initial_lr"], optimizer.param_groups))
        super(WarmupReduceLROnPlateau, self).__init__(
            optimizer, factor=gamma, patience=patience, mode="max", min_lr=eta_min, verbose=verbose
        )

    def step(self, metrics=None):
        warmup_factor = 1

        if self.last_epoch < self.warmup_iters:
            if self.warmup_method == "constant":
                warmup_factor = self.warmup_factor
            elif self.warmup_method == "linear":
                alpha = float(self.last_epoch) / self.warmup_iters
                warmup_factor = self.warmup_factor * (1 - alpha) + alpha

            if self.last_epoch >= self.warmup_iters - 1:
                warmup_factor = 1.0

            warmup_lrs = [base_lr * warmup_factor for base_lr in self.base_lrs]

            for param_group, lr in zip(self.optimizer.param_groups, warmup_lrs):
                param_group["lr"] = lr

            self.last_epoch += 1
        elif metrics:
            super().step(metrics)