Spaces:
Sleeping
Sleeping
File size: 29,420 Bytes
749745d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 |
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved.
"""
Implements the Generalized VL R-CNN framework
"""
import torch
from torch import nn
import torch.nn.functional as F
import torch.utils.checkpoint as checkpoint
from maskrcnn_benchmark.structures.image_list import to_image_list
from maskrcnn_benchmark.structures.bounding_box import BoxList
from maskrcnn_benchmark.structures.boxlist_ops import cat_boxlist
from ..backbone import build_backbone, build_fusion_backbone
from ..rpn import build_rpn
from ..roi_heads import build_roi_heads
from ..language_backbone import build_language_backbone
from transformers import AutoTokenizer
import random
import timeit
import pdb
from copy import deepcopy
def random_word(input_ids, mask_token_id, vocabs, padding_token_id, greenlight_map):
"""
greenlight_map, batch_size x 256 (seq_len):
0 means this location cannot be calculated in the MLM loss
-1 means this location cannot be masked!!
1 means this location can be masked and can be calculated in the MLM loss
"""
output_label = deepcopy(input_ids)
for j in range(input_ids.size(0)):
for i in range(input_ids.size(1)):
prob = random.random()
# mask token with probability
ratio = 0.15
if greenlight_map is not None and greenlight_map[j, i] == -1:
output_label[j, i] = -100
continue
if (not input_ids[j, i] == padding_token_id) and prob < ratio:
prob /= ratio
# 80% randomly change token to mask token
if prob < 0.8:
input_ids[j, i] = mask_token_id
# 10% randomly change token to random token
elif prob < 0.9:
input_ids[j, i] = random.choice(vocabs)
else:
# no masking token (will be ignored by loss function later)
output_label[j, i] = -100
if greenlight_map is not None and greenlight_map[j, i] != 1:
output_label[j, i] = -100 # If this location should not be masked
return input_ids, output_label
def get_char_token_with_relaxation(tokenized, beg, end, batch_index = None):
beg_pos = tokenized.char_to_token(batch_index, beg)
end_pos = tokenized.char_to_token(batch_index, end - 1)
if beg_pos is None:
try:
beg_pos = tokenized.char_to_token(batch_index, beg + 1)
if beg_pos is None:
beg_pos = tokenized.char_to_token(batch_index, beg + 2)
except:
beg_pos = None
if end_pos is None:
try:
end_pos = tokenized.char_to_token(batch_index, end - 2)
if end_pos is None:
end_pos = tokenized.char_to_token(batch_index, end - 3)
except:
end_pos = None
if beg_pos is None or end_pos is None:
return None, None
return beg_pos, end_pos + 1
class GeneralizedVLRCNN(nn.Module):
"""
Main class for Generalized R-CNN. Currently supports boxes and masks.
It consists of three main parts:
- backbone
- rpn
- heads: takes the features + the proposals from the RPN and computes
detections / masks from it.
"""
def __init__(self, cfg):
super(GeneralizedVLRCNN, self).__init__()
self.cfg = cfg
self.fusion_in_backbone = cfg.MODEL.SWINT.VERSION == "fusion"
# visual encoder
backbone = build_backbone(cfg)
# language encoder
if cfg.MODEL.LANGUAGE_BACKBONE.TOKENIZER_TYPE == "clip":
# self.tokenizer = build_tokenizer("clip")
from transformers import CLIPTokenizerFast
if cfg.MODEL.DYHEAD.FUSE_CONFIG.MLM_LOSS:
print("Reuse token 'ðŁĴij</w>' (token_id = 49404) for mask token!")
self.tokenizer = CLIPTokenizerFast.from_pretrained(
"openai/clip-vit-base-patch32", from_slow=True, mask_token="ðŁĴij</w>"
)
else:
self.tokenizer = CLIPTokenizerFast.from_pretrained("openai/clip-vit-base-patch32", from_slow=True)
else:
self.tokenizer = AutoTokenizer.from_pretrained(cfg.MODEL.LANGUAGE_BACKBONE.TOKENIZER_TYPE)
self.tokenizer_vocab = self.tokenizer.get_vocab()
self.tokenizer_vocab_ids = [item for key, item in self.tokenizer_vocab.items()]
# if cfg.MODEL.LANGUAGE_BACKBONE.TOKENIZER_TYPE == "bert-base-uncased":
# self.tokenizer = BertTokenizerFast.from_pretrained("bert-base-uncased")
# elif cfg.MODEL.LANGUAGE_BACKBONE.TOKENIZER_TYPE == "roberta-base":
# self.tokenizer = RobertaTokenizerFast.from_pretrained("roberta-base")
# else:
# raise NotImplementedError
# self.tokenizer = AutoTokenizer.from_pretrained(cfg.MODEL.LANGUAGE_BACKBONE.TOKENIZER_TYPE)
language_backbone = build_language_backbone(cfg)
if self.fusion_in_backbone:
self.fusion_backbone = build_fusion_backbone(
backbone,
language_backbone,
cfg.MODEL.BACKBONE.FUSION_VERSION,
add_linear_layer=cfg.MODEL.DYHEAD.FUSE_CONFIG.ADD_LINEAR_LAYER,
)
else:
self.backbone = backbone
self.language_backbone = language_backbone
self.rpn = build_rpn(cfg)
self.roi_heads = build_roi_heads(cfg)
self.DEBUG = cfg.MODEL.DEBUG
self.freeze_backbone = cfg.MODEL.BACKBONE.FREEZE
self.freeze_fpn = cfg.MODEL.FPN.FREEZE
self.freeze_rpn = cfg.MODEL.RPN.FREEZE
self.add_linear_layer = cfg.MODEL.DYHEAD.FUSE_CONFIG.ADD_LINEAR_LAYER
self.force_boxes = cfg.MODEL.RPN.FORCE_BOXES
if cfg.MODEL.LINEAR_PROB:
assert cfg.MODEL.BACKBONE.FREEZE, "For linear probing, backbone should be frozen!"
if self.fusion_in_backbone:
if hasattr(self.fusion_backbone.backbone, "fpn"):
assert cfg.MODEL.FPN.FREEZE, "For linear probing, FPN should be frozen!"
else:
if hasattr(self.backbone, "fpn"):
assert cfg.MODEL.FPN.FREEZE, "For linear probing, FPN should be frozen!"
self.linear_prob = cfg.MODEL.LINEAR_PROB
self.freeze_cls_logits = cfg.MODEL.DYHEAD.FUSE_CONFIG.USE_DOT_PRODUCT_TOKEN_LOSS
if cfg.MODEL.DYHEAD.FUSE_CONFIG.USE_DOT_PRODUCT_TOKEN_LOSS:
# disable cls_logits
if hasattr(self.rpn.head, "cls_logits"):
for p in self.rpn.head.cls_logits.parameters():
p.requires_grad = False
self.freeze_language_backbone = self.cfg.MODEL.LANGUAGE_BACKBONE.FREEZE
if self.cfg.MODEL.LANGUAGE_BACKBONE.FREEZE:
if self.fusion_in_backbone:
for p in self.fusion_backbone.language_backbone.parameters():
p.requires_grad = False
else:
for p in self.language_backbone.parameters():
p.requires_grad = False
self.use_mlm_loss = cfg.MODEL.DYHEAD.FUSE_CONFIG.MLM_LOSS
self.mlm_loss_for_only_positives = cfg.MODEL.DYHEAD.FUSE_CONFIG.MLM_LOSS_FOR_ONLY_POSITIVES
if self.cfg.MODEL.DYHEAD.FUSE_CONFIG.ADD_LINEAR_LAYER and not self.fusion_in_backbone:
self.tunable_linear = torch.nn.Linear(cfg.MODEL.LANGUAGE_BACKBONE.LANG_DIM, 1000, bias=False)
self.tunable_linear.weight.data.fill_(0.0)
def train(self, mode=True):
"""Convert the model into training mode while keep layers freezed."""
super(GeneralizedVLRCNN, self).train(mode)
if self.freeze_backbone:
if self.fusion_in_backbone:
self.fusion_backbone.backbone.body.eval()
for p in self.fusion_backbone.backbone.body.parameters():
p.requires_grad = False
else:
self.backbone.body.eval()
for p in self.backbone.body.parameters():
p.requires_grad = False
if self.freeze_fpn:
if self.fusion_in_backbone:
self.fusion_backbone.backbone.fpn.eval()
for p in self.fusion_backbone.backbone.fpn.parameters():
p.requires_grad = False
else:
self.backbone.fpn.eval()
for p in self.backbone.fpn.parameters():
p.requires_grad = False
if self.freeze_rpn:
if hasattr(self.rpn, "head"):
self.rpn.head.eval()
for p in self.rpn.parameters():
p.requires_grad = False
if self.linear_prob:
if self.rpn is not None:
for key, value in self.rpn.named_parameters():
if not (
"bbox_pred" in key
or "cls_logits" in key
or "centerness" in key
or "cosine_scale" in key
or "dot_product_projection_text" in key
or "head.log_scale" in key
or "head.bias_lang" in key
or "head.bias0" in key
):
value.requires_grad = False
if self.roi_heads is not None:
for key, value in self.roi_heads.named_parameters():
if not (
"bbox_pred" in key
or "cls_logits" in key
or "centerness" in key
or "cosine_scale" in key
or "dot_product_projection_text" in key
or "head.log_scale" in key
or "head.bias_lang" in key
or "head.bias0" in key
):
value.requires_grad = False
if self.freeze_cls_logits:
if hasattr(self.rpn.head, "cls_logits"):
self.rpn.head.cls_logits.eval()
for p in self.rpn.head.cls_logits.parameters():
p.requires_grad = False
if self.add_linear_layer:
if not self.fusion_in_backbone:
if self.rpn is not None:
for key, p in self.rpn.named_parameters():
if "tunable_linear" in key:
p.requires_grad = True
else:
for key, p in self.fusion_backbone.named_parameters():
if "tunable_linear" in key:
p.requires_grad = True
if self.freeze_language_backbone:
if self.fusion_in_backbone:
self.fusion_backbone.language_backbone.eval()
for p in self.fusion_backbone.language_backbone.parameters():
p.requires_grad = False
else:
self.language_backbone.eval()
for p in self.language_backbone.parameters():
p.requires_grad = False
def forward(self, images, targets=None, captions=None, positive_map=None, greenlight_map=None, spans = None, span_map = None):
"""
Arguments:
images (list[Tensor] or ImageList): images to be processed
targets (list[BoxList]): ground-truth boxes present in the image (optional)
mask_black_list: batch x 256, indicates whether or not a certain token is maskable or not
Returns:
result (list[BoxList] or dict[Tensor]): the output from the model.
During training, it returns a dict[Tensor] which contains the losses.
During testing, it returns list[BoxList] contains additional fields
like `scores`, `labels` and `mask` (for Mask R-CNN models).
"""
if self.training and targets is None:
raise ValueError("In training mode, targets should be passed")
images = to_image_list(images)
# batch_size = images.tensors.shape[0]
device = images.tensors.device
# if we use the advanced span prediction version, we need to do both preprocessing and postprocessing
if self.cfg.MODEL.DYHEAD.FUSE_CONFIG.SPAN_VERSION is not None and self.cfg.MODEL.DYHEAD.FUSE_CONFIG.SPAN_VERSION.startswith("v2"):
if spans is None:
spans = [i.extra_fields['spans'] if "spans" in i.extra_fields else [] for i in targets] # if we did not pass the spans explicitly
assert(len(spans) == len(captions))
new_captions = []
mapping_batch_span_to_caption_num = {} # (batch_num, start, end) -> caption_num
mapping_batch_to_caption_num = {}
corrected_spans = deepcopy(spans)
for i in range(len(captions)):
if len(spans[i]) == 0: # if this instance does not have span
mapping_batch_to_caption_num[i] = len(new_captions)
new_captions.append(captions[i])
continue
for j in range(len(spans[i])):
''' spans[i][j]:
[[230, 241],
[241, 254],
[254, 269],
[269, 298],]
'''
valid_spans = [k for k in spans[i][j] if k[0] != -1]
if "independent" in self.cfg.MODEL.DYHEAD.FUSE_CONFIG.SPAN_VERSION:
for k, span_i_j_k in enumerate(valid_spans):
mapping_batch_span_to_caption_num[(i, span_i_j_k[0], span_i_j_k[1])] = len(new_captions)
corrected_spans[i][j][k] = (0, span_i_j_k[1] - span_i_j_k[0])
new_captions.append(captions[i][span_i_j_k[0]:span_i_j_k[1]])
else:
start = valid_spans[0][0]
end = valid_spans[-1][-1]
# rewrite the spans !!
corrected_spans[i][j] = [(k[0] - start, k[1] - start) for k in spans[i][j]]
for k in valid_spans:
mapping_batch_span_to_caption_num[(i, k[0], k[1])] = len(new_captions)
#mapping_batch_to_caption_num[i] = len(new_captions)
new_captions.append(captions[i][start:end])
captions = new_captions
padding_method = "longest"
#print(new_captions)
else:
mapping_batch_span_to_caption_num = None
padding_method = "max_length" if self.cfg.MODEL.LANGUAGE_BACKBONE.PAD_MAX else "longest"
# language embedding
language_dict_features = {}
if captions is not None:
# print(captions[0])
tokenized = self.tokenizer.batch_encode_plus(
captions,
max_length=self.cfg.MODEL.LANGUAGE_BACKBONE.MAX_QUERY_LEN,
padding=padding_method,
return_special_tokens_mask=True,
return_tensors="pt",
truncation=True,
).to(device)
if self.use_mlm_loss:
if not self.mlm_loss_for_only_positives:
greenlight_map = None
input_ids, mlm_labels = random_word(
input_ids=tokenized.input_ids,
mask_token_id=self.tokenizer.mask_token_id,
vocabs=self.tokenizer_vocab_ids,
padding_token_id=self.tokenizer.pad_token_id,
greenlight_map=greenlight_map,
)
else:
input_ids = tokenized.input_ids
mlm_labels = None
tokenizer_input = {"input_ids": input_ids, "attention_mask": tokenized.attention_mask}
if not self.fusion_in_backbone:
if self.cfg.MODEL.LANGUAGE_BACKBONE.FREEZE:
with torch.no_grad():
language_dict_features = self.language_backbone(tokenizer_input)
else:
language_dict_features = self.language_backbone(tokenizer_input)
# ONE HOT
if self.cfg.DATASETS.ONE_HOT:
new_masks = torch.zeros_like(
language_dict_features["masks"], device=language_dict_features["masks"].device
)
new_masks[:, : self.cfg.MODEL.DYHEAD.NUM_CLASSES] = 1
language_dict_features["masks"] = new_masks
# MASK ALL SPECIAL TOKENS
if self.cfg.MODEL.LANGUAGE_BACKBONE.MASK_SPECIAL:
language_dict_features["masks"] = 1 - tokenized.special_tokens_mask
language_dict_features["mlm_labels"] = mlm_labels
if not self.fusion_in_backbone:
# visual embedding
swint_feature_c4 = None
if "vl" in self.cfg.MODEL.SWINT.VERSION:
# the backbone only updates the "hidden" field in language_dict_features
inputs = {"img": images.tensors, "lang": language_dict_features}
visual_features, language_dict_features, swint_feature_c4 = self.backbone(inputs)
else:
visual_features = self.backbone(images.tensors)
else:
visual_features, language_dict_features, swint_feature_c4 = self.fusion_backbone(tokenizer_input, images)
language_dict_features["mlm_labels"] = mlm_labels
# add the prompt tuning linear layer if not fusion, for fusion do it inside the backbone
if not self.fusion_in_backbone:
if self.cfg.MODEL.DYHEAD.FUSE_CONFIG.ADD_LINEAR_LAYER:
embedding = language_dict_features["embedded"]
embedding = self.tunable_linear.weight[: embedding.size(1), :].unsqueeze(0) + embedding
language_dict_features["embedded"] = embedding
language_dict_features["hidden"] = (
self.tunable_linear.weight[: embedding.size(1), :].unsqueeze(0) + language_dict_features["hidden"]
)
# if we do span prediction
if self.cfg.MODEL.DYHEAD.FUSE_CONFIG.SPAN_VERSION is not None:
loss_version = self.cfg.MODEL.DYHEAD.FUSE_CONFIG.SPAN_VERSION.split(".")[0]
pooling_version = self.cfg.MODEL.DYHEAD.FUSE_CONFIG.SPAN_VERSION.split(".")[-1]
# will just override everything
# Step 1. get the spans
embedding = language_dict_features["hidden"]
if spans is None:
spans = [i.extra_fields['spans'] if "spans" in i.extra_fields else [] for i in targets] # if we did not pass the spans explicitly
if mapping_batch_span_to_caption_num is not None: # need to do a remapping
flatterned_spans = []
for i in spans:
_ = []
for j in i:
_.extend(j)
flatterned_spans.append(_)
spans = flatterned_spans
# flattern corrected spans
flatterned_corrected_spans = []
for i in corrected_spans:
_ = []
for j in i:
_.extend(j)
flatterned_corrected_spans.append(_)
corrected_spans = flatterned_corrected_spans
max_span_num = max([len(i) for i in spans])
# go over the batch, see if there is an instance without spans; if so, we override the span_num to the token_num of that instance
for i, spans_i in enumerate(spans):
if len(spans_i) == 0: # no spans
text_length = sum(tokenized.attention_mask[mapping_batch_to_caption_num[i]])
max_span_num = max(text_length, max_span_num) # override
# Step 2. Get the Masks
span_masks = torch.zeros((len(spans), max_span_num), device=embedding.device, dtype=torch.long)
for i, spans_i in enumerate(spans):
if len(spans_i) == 0:
# this would be the text masks
text_mask_i = tokenized.attention_mask[mapping_batch_to_caption_num[i]]
text_length = sum(text_mask_i)
span_masks[i, : text_length] = text_mask_i[:text_length]
else:
span_masks[i, : len(spans_i)] = 1
# Step 3. get the span features
span_features = torch.zeros((len(spans), max_span_num, embedding.size(2)), device=embedding.device, dtype=embedding.dtype)
# the complexity is just batch x span_num; should be begign for a foor loop
for i, spans_i in enumerate(spans):
if len(spans_i) == 0:
# directly override with the embedding
__len = min(max_span_num, embedding[mapping_batch_to_caption_num[i]].size(0))
span_features[i, :__len, :] = embedding[mapping_batch_to_caption_num[i], :__len, :]
else:
for j, span in enumerate(spans_i):
# first need to get the correct tokenized version
mapped_sentence_index = mapping_batch_span_to_caption_num[(i, span[0], span[1])] # here we use the original span
start, end = get_char_token_with_relaxation(tokenized, corrected_spans[i][j][0], corrected_spans[i][j][1], batch_index = mapped_sentence_index) # here use the span location after we have partitioned the sentence
if start is None or end is None:
span_masks[i, j] = 0 # mark this span as invalid
if pooling_version == "mean":
span_rep_i_j = torch.mean(embedding[mapped_sentence_index, start:end, :], dim=0)
elif pooling_version == "max":
span_rep_i_j = torch.max(embedding[mapped_sentence_index, start:end, :], dim=0)[0]
span_features[i, j, :] = span_rep_i_j
else:
assert(0)
# max_span_num = max([len(i) for i in spans])
# # Step 2. Get the Masks
# span_masks = torch.zeros((len(spans), max_span_num), device=embedding.device, dtype=torch.long)
# for i, spans_i in enumerate(spans):
# span_masks[i, : len(spans_i)] = 1
# # Step 3. get the span features
# span_features = torch.zeros((len(spans), max_span_num, embedding.size(2)), device=embedding.device, dtype=embedding.dtype)
# # the complexity is just batch x span_num; should be begign for a foor loop
# for i, spans in enumerate(spans):
# for j, span in enumerate(spans):
# # span records the char location; needs to convert to token location first
# start, end = get_char_token_with_relaxation(tokenized, span[0], span[1], batch_index = i)
# if start is None or end is None:
# span_masks[i, j] = 0 # mark this span as invalid
# if pooling_version == "mean":
# span_rep_i_j = torch.mean(embedding[i, start:end, :], dim=0)
# elif pooling_version == "max":
# span_rep_i_j = torch.max(embedding[i, start:end, :], dim=0)[0]
# span_features[i, j, :] = span_rep_i_j
# Step 4. Rewrite the labels (?)
# we need to rewrite targets, positive_map, text_masks, text_embeddings
if span_map is None:
span_map = torch.zeros((positive_map.size(0), max_span_num), device=embedding.device, dtype=torch.float)
_all_span_map_flattern = [] # box_num x span_num
for target_i in targets:
if "span_map" in target_i.extra_fields:
_all_span_map_flattern.extend([j for j in target_i.extra_fields["span_map"]])
else:
# if not, create a list of empty lists
num_box = target_i.bbox.size(0)
_all_span_map_flattern.extend([[]] * num_box) # very important
assert(len(_all_span_map_flattern) == positive_map.size(0))
for i, span_map_i in enumerate(_all_span_map_flattern):
if len(span_map_i) == 0:
seq_len = min(max_span_num, positive_map.size(1))
span_map[i, :seq_len] = positive_map[i, :seq_len] # use the original positive map in this case!
else:
span_map[i, :len(span_map_i)] = span_map_i
# Step 5. Override
positive_map = span_map
language_dict_features["masks"] = span_masks
language_dict_features["embedded"] = span_features
language_dict_features["hidden"] = span_features
if targets is not None:
for i in targets:
if "span_map" in i.extra_fields:
i.extra_fields["positive_map"] = i.extra_fields["span_map"] # override if span
# rpn force boxes
if targets:
targets = [target.to(device) for target in targets if target is not None]
if self.force_boxes:
proposals = []
for t in targets:
tb = t.copy_with_fields(["labels"])
tb.add_field("scores", torch.ones(tb.bbox.shape[0], dtype=torch.bool, device=tb.bbox.device))
proposals.append(tb)
if self.cfg.MODEL.RPN.RETURN_FUSED_FEATURES:
_, proposal_losses, fused_visual_features = self.rpn(
images, visual_features, targets, language_dict_features, positive_map, captions, swint_feature_c4
)
elif self.training:
null_loss = 0
for key, param in self.rpn.named_parameters():
null_loss += 0.0 * param.sum()
proposal_losses = {("rpn_null_loss", null_loss)}
else:
proposals, proposal_losses, fused_visual_features = self.rpn(
images, visual_features, targets, language_dict_features, positive_map, captions, swint_feature_c4
)
if self.roi_heads:
if not self.training:
assert len(proposals) == 1, "Evaluation batch size per GPU should be 1!"
if len(proposals[0]) == 0:
return proposals
if self.cfg.MODEL.ROI_MASK_HEAD.PREDICTOR.startswith("VL"):
if self.training:
# "Only support VL mask head right now!!"
assert len(targets) == 1 and len(targets[0]) == len(
positive_map
), "shape match assert for mask head!!"
# Not necessary but as a safe guard:
# use the binary 0/1 positive map to replace the normalized positive map
targets[0].add_field("positive_map", positive_map)
# TODO: make sure that this use of language_dict_features is correct!! Its content should be changed in self.rpn
if self.cfg.MODEL.RPN.RETURN_FUSED_FEATURES:
x, result, detector_losses = self.roi_heads(
fused_visual_features,
proposals,
targets,
language_dict_features=language_dict_features,
positive_map_label_to_token=positive_map if not self.training else None,
)
else:
x, result, detector_losses = self.roi_heads(
visual_features,
proposals,
targets,
language_dict_features=language_dict_features,
positive_map_label_to_token=positive_map if not self.training else None,
)
else:
# RPN-only models don't have roi_heads
x = visual_features
result = proposals
detector_losses = {}
if self.training:
losses = {}
losses.update(detector_losses)
losses.update(proposal_losses)
return losses
return result
|