File size: 6,399 Bytes
749745d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
import torch
import torch.nn as nn
import torch.nn.functional as F


class FeatureResizer(nn.Module):
    """

    This class takes as input a set of embeddings of dimension C1 and outputs a set of

    embedding of dimension C2, after a linear transformation, dropout and normalization (LN).

    """

    def __init__(self, input_feat_size, output_feat_size, dropout, do_ln=True):
        super().__init__()
        self.do_ln = do_ln
        # Object feature encoding
        self.fc = nn.Linear(input_feat_size, output_feat_size, bias=True)
        self.layer_norm = nn.LayerNorm(output_feat_size, eps=1e-12)
        self.dropout = nn.Dropout(dropout)

    def forward(self, encoder_features):
        x = self.fc(encoder_features)
        if self.do_ln:
            x = self.layer_norm(x)
        output = self.dropout(x)
        return output


def _make_conv(input_dim, output_dim, k, stride=1):
    pad = (k - 1) // 2
    return nn.Sequential(
        nn.Conv2d(input_dim, output_dim, (k, k), padding=(pad, pad), stride=(stride, stride)),
        nn.BatchNorm2d(output_dim),
        nn.ReLU(inplace=True),
    )


def _make_mlp(input_dim, output_dim, drop):
    return nn.Sequential(
        nn.Linear(input_dim, output_dim),
        nn.BatchNorm1d(output_dim),
        nn.ReLU(inplace=True),
        nn.Dropout(drop),
        nn.Linear(output_dim, output_dim),
        nn.BatchNorm1d(output_dim),
        nn.ReLU(inplace=True),
    )


def _make_coord(batch, height, width):
    # relative position encoding
    xv, yv = torch.meshgrid([torch.arange(0, height), torch.arange(0, width)])
    xv_min = (xv.float() * 2 - width) / width
    yv_min = (yv.float() * 2 - height) / height
    xv_max = ((xv + 1).float() * 2 - width) / width
    yv_max = ((yv + 1).float() * 2 - height) / height
    xv_ctr = (xv_min + xv_max) / 2
    yv_ctr = (yv_min + yv_max) / 2
    hmap = torch.ones(height, width) * (1.0 / height)
    wmap = torch.ones(height, width) * (1.0 / width)
    coord = torch.autograd.Variable(
        torch.cat(
            [
                xv_min.unsqueeze(0),
                yv_min.unsqueeze(0),
                xv_max.unsqueeze(0),
                yv_max.unsqueeze(0),
                xv_ctr.unsqueeze(0),
                yv_ctr.unsqueeze(0),
                hmap.unsqueeze(0),
                wmap.unsqueeze(0),
            ],
            dim=0,
        )
    )
    coord = coord.unsqueeze(0).repeat(batch, 1, 1, 1)
    return coord


def l1norm(X, dim, eps=1e-8):
    """L1-normalize columns of X"""
    norm = torch.abs(X).sum(dim=dim, keepdim=True) + eps
    X = torch.div(X, norm)
    return X


def l2norm(X, dim, eps=1e-8):
    """L2-normalize columns of X"""
    norm = torch.pow(X, 2).sum(dim=dim, keepdim=True).sqrt() + eps
    X = torch.div(X, norm)
    return X


def func_attention(query, context, smooth=1, raw_feature_norm="softmax", eps=1e-8):
    """

    query: (n_context, queryL, d)

    context: (n_context, sourceL, d)

    """
    batch_size_q, queryL = query.size(0), query.size(1)
    batch_size, sourceL = context.size(0), context.size(1)

    # Get attention
    # --> (batch, d, queryL)
    queryT = torch.transpose(query, 1, 2)

    # (batch, sourceL, d)(batch, d, queryL)
    # --> (batch, sourceL, queryL)
    attn = torch.bmm(context, queryT)
    if raw_feature_norm == "softmax":
        # --> (batch*sourceL, queryL)
        attn = attn.view(batch_size * sourceL, queryL)
        attn = nn.Softmax()(attn)
        # --> (batch, sourceL, queryL)
        attn = attn.view(batch_size, sourceL, queryL)
    elif raw_feature_norm == "l2norm":
        attn = l2norm(attn, 2)
    elif raw_feature_norm == "clipped_l2norm":
        attn = nn.LeakyReLU(0.1)(attn)
        attn = l2norm(attn, 2)
    else:
        raise ValueError("unknown first norm type:", raw_feature_norm)
    # --> (batch, queryL, sourceL)
    attn = torch.transpose(attn, 1, 2).contiguous()
    # --> (batch*queryL, sourceL)
    attn = attn.view(batch_size * queryL, sourceL)
    attn = nn.Softmax()(attn * smooth)
    # --> (batch, queryL, sourceL)
    attn = attn.view(batch_size, queryL, sourceL)
    # --> (batch, sourceL, queryL)
    attnT = torch.transpose(attn, 1, 2).contiguous()

    # --> (batch, d, sourceL)
    contextT = torch.transpose(context, 1, 2)
    # (batch x d x sourceL)(batch x sourceL x queryL)
    # --> (batch, d, queryL)
    weightedContext = torch.bmm(contextT, attnT)
    # --> (batch, queryL, d)
    weightedContext = torch.transpose(weightedContext, 1, 2)

    return weightedContext, attnT


class MultiHeadAttention(nn.Module):
    """Multi-head attention module for both image and text"""

    def __init__(self, n_head, d_model, d_k, d_v, dropout=0.1):
        super(MultiHeadAttention, self).__init__()

        self.n_head = n_head
        self.d_k = d_k
        self.d_v = d_v

        self.w_qs = nn.Linear(d_model, n_head * d_k, bias=False)
        self.w_ks = nn.Linear(d_model, n_head * d_k, bias=False)
        self.w_vs = nn.Linear(d_model, n_head * d_v, bias=False)
        self.fc = nn.Linear(n_head * d_v, d_model, bias=False)

        self.dropout = nn.Dropout(dropout)
        self.layer_norm = nn.LayerNorm(d_model, eps=1e-6)

    def forward(self, q, k, v):
        d_k, d_v, n_head = self.d_k, self.d_v, self.n_head
        sz_b, len_q, len_k, len_v = q.size(0), q.size(1), k.size(1), v.size(1)

        # Pass through the pre-attention projection: b x lq x (n*dv)
        # Separate different heads: b x lq x n x dv
        q = self.w_qs(q).view(sz_b, len_q, n_head, d_k)
        k = self.w_ks(k).view(sz_b, len_k, n_head, d_k)
        v = self.w_vs(v).view(sz_b, len_v, n_head, d_v)

        # Transpose for attention dot product: b x n x lq x dv
        q, k, v = q.transpose(1, 2), k.transpose(1, 2), v.transpose(1, 2)
        attn = torch.matmul(q, k.transpose(2, 3))
        attn = self.dropout(F.softmax(attn, dim=-1))
        q = torch.matmul(attn, v)

        # Transpose to move the head dimension back: b x lq x n x dv
        # Combine the last two dimensions to concatenate all the heads together: b x lq x (n*dv)
        q = q.transpose(1, 2).contiguous().view(sz_b, len_q, -1)
        q = self.dropout(self.fc(q))

        return q, attn