Spaces:
Sleeping
Sleeping
File size: 37,368 Bytes
749745d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 |
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved.
import os
from yacs.config import CfgNode as CN
# -----------------------------------------------------------------------------
# Convention about Training / Test specific parameters
# -----------------------------------------------------------------------------
# Whenever an argument can be either used for training or for testing, the
# corresponding name will be post-fixed by a _TRAIN for a training parameter,
# or _TEST for a test-specific parameter.
# For example, the number of images during training will be
# IMAGES_PER_BATCH_TRAIN, while the number of images for testing will be
# IMAGES_PER_BATCH_TEST
# -----------------------------------------------------------------------------
# Config definition
# -----------------------------------------------------------------------------
_C = CN()
_C.MODEL = CN()
_C.MODEL.RPN_ONLY = False
_C.MODEL.BOX_ON = True
_C.MODEL.MASK_ON = False
_C.MODEL.KEYPOINT_ON = False
_C.MODEL.DEVICE = "cuda"
_C.MODEL.META_ARCHITECTURE = "GeneralizedRCNN"
_C.MODEL.RPN_ARCHITECTURE = "RPN"
_C.MODEL.DEBUG = False # add debug flag
_C.MODEL.ONNX = False # add onnx flag
# If the WEIGHT starts with a catalog://, like :R-50, the code will look for
# the path in paths_catalog. Else, it will use it as the specified absolute
# path
_C.MODEL.WEIGHT = ""
_C.MODEL.PRETRAIN_NAME = ""
# If LINEAR_PROB = True, only the last linear layers in rpn and roi_head are trainable
_C.MODEL.LINEAR_PROB = False
# -----------------------------------------------------------------------------
# Multitask Training / Test specific parameters
# -----------------------------------------------------------------------------
_C.MODEL.MULTITASK = CN(new_allowed=True)
# -----------------------------------------------------------------------------
# INPUT
# -----------------------------------------------------------------------------
_C.INPUT = CN()
# Size of the smallest side of the image during training
_C.INPUT.MIN_SIZE_TRAIN = 800 # (800,)
# Maximum size of the side of the image during training
_C.INPUT.MAX_SIZE_TRAIN = 1333
# Size of the smallest side of the image during testing
_C.INPUT.MIN_SIZE_TEST = 800
# Maximum size of the side of the image during testing
_C.INPUT.MAX_SIZE_TEST = 1333
# Values to be used for image normalization
_C.INPUT.PIXEL_MEAN = [102.9801, 115.9465, 122.7717]
# Values to be used for image normalization
_C.INPUT.PIXEL_STD = [1.0, 1.0, 1.0]
# Convert image to BGR format (for Caffe2 models), in range 0-255
_C.INPUT.TO_BGR255 = True
_C.INPUT.FORMAT = ""
_C.INPUT.FIX_RES = False
# -----------------------------------------------------------------------------
# Augmentation
# -----------------------------------------------------------------------------
_C.AUGMENT = CN()
_C.AUGMENT.USE_RA = 0
_C.AUGMENT.FLIP_PROB_TRAIN = 0.5
_C.AUGMENT.VERTICAL_FLIP_PROB_TRAIN = 0.0
_C.AUGMENT.MULT_MIN_SIZE_TRAIN = ()
_C.AUGMENT.BRIGHTNESS = 0.0
_C.AUGMENT.CONTRAST = 0.0
_C.AUGMENT.SATURATION = 0.0
_C.AUGMENT.HUE = 0.0
_C.AUGMENT.CROP_PROB = 0.5
_C.AUGMENT.CROP_MIN_IOUS = (0.1, 0.3, 0.5, 0.7, 0.9)
_C.AUGMENT.CROP_MIN_SIZE = 0.3
_C.AUGMENT.AFFINE_PROB = 0.5
_C.AUGMENT.AFFINE_R = (-10, 10)
_C.AUGMENT.AFFINE_T = (0.1, 0.1)
_C.AUGMENT.AFFINE_S = (0.9, 1.1)
_C.AUGMENT.AFFINE_SHEAR = (-2, 2)
_C.AUGMENT.AFFINE_FILL = (127.5, 127.5, 127.5)
_C.AUGMENT.ERASE_PROB = 0.0
_C.AUGMENT.ERASE_L = 0.02
_C.AUGMENT.ERASE_H = 1 / 3
_C.AUGMENT.ERASE_MIN_ASPECT = 0.3
_C.AUGMENT.ERASE_MODE = "const"
_C.AUGMENT.ERASE_MAX_COUNT = 1
_C.AUGMENT.ERASE_MAX_OVERLAP = 0.6
_C.AUGMENT.ERASE_MAX_VALUE = 255
_C.AUGMENT.MOSAIC_PROB = 0.0
_C.AUGMENT.MOSAIC_SHIFT = 0.5
_C.AUGMENT.MOSAIC_SIZE = -1
_C.AUGMENT.PASTE_PROB = 0.0
_C.AUGMENT.PASTE_CAT = ()
_C.AUGMENT.PASTE_NUM = 2
# -----------------------------------------------------------------------------
# Dataset
# -----------------------------------------------------------------------------
_C.DATASETS = CN()
# List of the dataset names for training, as present in paths_catalog.py
_C.DATASETS.TRAIN = ()
# List of the dataset names for testing, as present in paths_catalog.py
_C.DATASETS.TEST = ()
# Use is_crowd label
_C.DATASETS.USE_CROWD = False
_C.DATASETS.CLASS_AGNOSTIC = False
_C.DATASETS.CLASS_CONCAT = False
_C.DATASETS.MAX_BOX = -1
_C.DATASETS.SAMPLE_RATIO = 0.0
_C.DATASETS.FEW_SHOT = 0
# SHUFFLE_SEED != 0 means shuffle the dataset in the few shot setting
_C.DATASETS.SHUFFLE_SEED = 0
_C.DATASETS.PREDEFINED_TEXT = ""
_C.DATASETS.ALTERNATIVE_TRAINING = False
_C.DATASETS.MULTISTAGE_TRAINING = False
_C.DATASETS.REGISTER = CN(new_allowed=True)
_C.DATASETS.BOX_THRESHOLD = 0.1
# Duplicate Dataset
_C.DATASETS.COCO_COPY = 1
_C.DATASETS.LVIS_COPY = 1
_C.DATASETS.FLICKR_COPY = 1
_C.DATASETS.MIXED_COPY = 1
_C.DATASETS.OBJECT365_COPY = 1
_C.DATASETS.VG_COPY = 1
_C.DATASETS.OI_COPY = 1
_C.DATASETS.IN_COPY = 1
_C.DATASETS.MIXED_GPT_COPY = 1
# Duplicate Dataset
_C.DATASETS.COCO_COPY = 1
_C.DATASETS.FLICKR_COPY = 1
_C.DATASETS.MIXED_COPY = 1
_C.DATASETS.OBJECT365_COPY = 1
_C.DATASETS.VG_COPY = 1
_C.DATASETS.OI_COPY = 1
_C.DATASETS.IN_COPY = 1
_C.DATASETS.REFCOCO_COPY = 1
_C.DATASETS.GENERAL_COPY = -1
_C.DATASETS.GENERAL_COPY_TEST = -1
# OD to Grounding
_C.DATASETS.RANDOM_SAMPLE_NEG = -1
_C.DATASETS.ADD_DET_PROMPT = False
_C.DATASETS.ADD_DET_PROMPT_ADVANCED = False
_C.DATASETS.USE_OD_AUG = False
_C.DATASETS.USE_COCO_FORMAT = False
_C.DATASETS.CONTROL_PROB = ()
_C.DATASETS.DISABLE_SHUFFLE = False
_C.DATASETS.PROMPT_VERSION = ""
_C.DATASETS.PROMPT_LIMIT_NEG = -1
_C.DATASETS.POS_QUESTION_PROB = 0.6
_C.DATASETS.NEG_QUESTION_PROB = 0.8
_C.DATASETS.FULL_QUESTION_PROB = 0.5
_C.DATASETS.ONE_HOT = False
_C.DATASETS.NO_MINUS_ONE_FOR_ONE_HOT = False
_C.DATASETS.DISABLE_CLIP_TO_IMAGE = False
_C.DATASETS.SEPARATION_TOKENS = " "
# LVIS
_C.DATASETS.LVIS_USE_NORMAL_AP = False
_C.DATASETS.LVIS_TOPK = 10000
_C.DATASETS.SPECIAL_SAFEGUARD_FOR_COCO_GROUNDING = False
# Caption
_C.DATASETS.BING_INDEX_LIST = []
_C.DATASETS.CAPTION_MIN_BOX = 1
_C.DATASETS.REPLACE_CLEAN_LABEL = False
_C.DATASETS.FURTHER_SCREEN = False
_C.DATASETS.CAPTION_CONF = 0.9
_C.DATASETS.CAPTION_NMS = 0.9
_C.DATASETS.PACK_RANDOM_CAPTION_NUMBER = 0
_C.DATASETS.INFERENCE_CAPTION = False
_C.DATASETS.SAMPLE_NEGATIVE_FOR_GROUNDING_DATA = -1.0
_C.DATASETS.RANDOM_PACK_PROB = -1.0
_C.DATASETS.NO_RANDOM_PACK_PROBABILITY = 0.0
_C.DATASETS.SAFEGUARD_POSITIVE_CAPTION = True
_C.DATASETS.CAPTION_FORMAT_VERSION = "v1"
_C.DATASETS.LOCAL_DEBUG = False
# Od in the wild
_C.DATASETS.PREDEFINED_TEXT = None
_C.DATASETS.TRAIN_DATASETNAME_SUFFIX = ""
_C.DATASETS.TEST_DATASETNAME_SUFFIX = ""
_C.DATASETS.OVERRIDE_CATEGORY = None
_C.DATASETS.USE_OVERRIDE_CATEGORY = False
_C.DATASETS.SUPRESS_QUERY = None
_C.DATASETS.USE_SUPRESS_QUERY = False
_C.DATASETS.USE_CAPTION_PROMPT = False
_C.DATASETS.CAPTION_PROMPT = None
_C.DATASETS.PREDOWNLOAD_BING = False
_C.DATASETS.PREDOWNLOAD_WITH_AZCOPY = False
_C.DATASETS.FLICKR_GT_TYPE = "separate"
# PACO
_C.DATASETS.OD_TO_GROUNDING_VERSION = "legacy"
# description
_C.DATASETS.DESCRIPTION_FILE = None
_C.DATASETS.SIMILARITY_FILE = None
_C.DATASETS.CAPTION_VOCAB_FILE = None
# caption augmentation
_C.DATASETS.CAPTION_AUGMENTATION_VOCAB = None
_C.DATASETS.CAPTION_AUGMENTATION_VERSION = None
_C.DATASETS.CC_CAPTION_AUGMENTATION_VERSION = None
_C.DATASETS.KEEP_NOUN_RATIO = 0.0
# VQA
_C.DATASETS.DIVER_BOX_FOR_VQA = False
# -----------------------------------------------------------------------------
# DataLoader
# -----------------------------------------------------------------------------
_C.DATALOADER = CN()
# Number of data loading threads
_C.DATALOADER.NUM_WORKERS = 4
# If > 0, this enforces that each collated batch should have a size divisible
# by SIZE_DIVISIBILITY
_C.DATALOADER.SIZE_DIVISIBILITY = 0
# If True, each batch should contain only images for which the aspect ratio
# is compatible. This groups portrait images together, and landscape images
# are not batched with portrait images.
_C.DATALOADER.ASPECT_RATIO_GROUPING = True
# Define min number of keypoints required from GT, for example 10 out of 17
_C.DATALOADER.MIN_KPS_PER_IMS = 0
# Use random sampler during training
_C.DATALOADER.USE_RANDOM_SEED = False
_C.DATALOADER.DISTRIBUTE_CHUNK_AMONG_NODE = False
# ---------------------------------------------------------------------------- #
# Backbone options
# ---------------------------------------------------------------------------- #
_C.MODEL.BACKBONE = CN()
# The backbone conv body to use
# The string must match a function that is imported in modeling.model_builder
# (e.g., 'FPN.add_fpn_ResNet101_conv5_body' to specify a ResNet-101-FPN
# backbone)
_C.MODEL.BACKBONE.CONV_BODY = "R-50-C4"
# Add StopGrad at a specified stage so the bottom layers are frozen
_C.MODEL.BACKBONE.FREEZE_CONV_BODY_AT = 2
_C.MODEL.BACKBONE.FREEZE = False
_C.MODEL.BACKBONE.GROUP = 1
_C.MODEL.BACKBONE.OUT_CHANNELS = 256 * 4
# Option to reset bn running statics
_C.MODEL.BACKBONE.RESET_BN = False
# Backbone Normalization Level
_C.MODEL.BACKBONE.NORM_LEVEL = 3
# BN for backbone
_C.MODEL.BACKBONE.USE_BN = False
# Sync BN for backbone
_C.MODEL.BACKBONE.USE_SYNCBN = False
_C.MODEL.BACKBONE.USE_NSYNCBN = False
# GN for backbone
_C.MODEL.BACKBONE.USE_GN = False
# Evo Norm for backbone
_C.MODEL.BACKBONE.USE_EN = False
# Layers for backbone
_C.MODEL.BACKBONE.USE_DFCONV = False
_C.MODEL.BACKBONE.USE_DYRELU = False
_C.MODEL.BACKBONE.USE_SE = False
_C.MODEL.BACKBONE.LAYER_SETUP = (3, 4, 6, 3)
_C.MODEL.BACKBONE.LAYER_SEARCH = CN(new_allowed=True)
_C.MODEL.BACKBONE.OUT_FEATURES = ("stage2", "stage3", "stage4", "stage5")
_C.MODEL.BACKBONE.FPN_LAYER = ()
_C.MODEL.BACKBONE.USE_CHECKPOINT = False
# Add JF efficient det cfgs
_C.MODEL.BACKBONE.EFFICIENT_DET_START_FROM = 3
_C.MODEL.BACKBONE.EFFICIENT_DET_COMPOUND = 0
_C.MODEL.BACKBONE.EFFICIENT_DET_BIFPN_VERSION = 0
_C.MODEL.BACKBONE.FUSION_VERSION = "v1" # Whether to use symmetric or non symmetric fusion
_C.MODEL.LANGUAGE_BACKBONE = CN()
_C.MODEL.LANGUAGE_BACKBONE.WEIGHT = ""
_C.MODEL.LANGUAGE_BACKBONE.FREEZE = False
_C.MODEL.LANGUAGE_BACKBONE.USE_CHECKPOINT = False
_C.MODEL.LANGUAGE_BACKBONE.TOKENIZER_TYPE = "bert-base-uncased"
_C.MODEL.LANGUAGE_BACKBONE.MODEL_TYPE = "bert-base-uncased"
_C.MODEL.LANGUAGE_BACKBONE.LANG_DIM = 768
_C.MODEL.LANGUAGE_BACKBONE.MAX_QUERY_LEN = 256
_C.MODEL.LANGUAGE_BACKBONE.N_LAYERS = 1
_C.MODEL.LANGUAGE_BACKBONE.UNUSED_TOKEN = 106
_C.MODEL.LANGUAGE_BACKBONE.MASK_SPECIAL = False
_C.MODEL.LANGUAGE_BACKBONE.RNN_TYPE = "lstm"
_C.MODEL.LANGUAGE_BACKBONE.VARIABLE_LENGTH = True
_C.MODEL.LANGUAGE_BACKBONE.WORD_EMBEDDING_SIZE = 512
_C.MODEL.LANGUAGE_BACKBONE.WORD_VEC_SIZE = 512
_C.MODEL.LANGUAGE_BACKBONE.HIDDEN_SIZE = 512
_C.MODEL.LANGUAGE_BACKBONE.BIDIRECTIONAL = True
_C.MODEL.LANGUAGE_BACKBONE.INPUT_DROPOUT_P = 0.5
_C.MODEL.LANGUAGE_BACKBONE.DROPOUT_P = 0.2
_C.MODEL.LANGUAGE_BACKBONE.CORPUS_PATH = ""
_C.MODEL.LANGUAGE_BACKBONE.VOCAB_SIZE = 0
_C.MODEL.LANGUAGE_BACKBONE.PAD_MAX = True
# ---------------------------------------------------------------------------- #
# FPN options
# ---------------------------------------------------------------------------- #
_C.MODEL.FPN = CN()
_C.MODEL.FPN.FREEZE = False
_C.MODEL.FPN.USE_GN = False
_C.MODEL.FPN.USE_RELU = False
_C.MODEL.FPN.USE_DYRELU = False
_C.MODEL.FPN.DROP_BLOCK = True
_C.MODEL.FPN.DROP_PROB = 0.3
_C.MODEL.FPN.DROP_SIZE = 3
_C.MODEL.FPN.USE_SPP = False
_C.MODEL.FPN.USE_PAN = False
_C.MODEL.FPN.USE_DYHEAD = False
_C.MODEL.FPN.RETURN_SWINT_FEATURE_BEFORE_FUSION = False
# ---------------------------------------------------------------------------- #
# BIFPN options
# ---------------------------------------------------------------------------- #
_C.MODEL.BIFPN = CN()
_C.MODEL.BIFPN.NUM_REPEATS = 1
_C.MODEL.BIFPN.USE_ATTENTION = True
# ---------------------------------------------------------------------------- #
# Group Norm options
# ---------------------------------------------------------------------------- #
_C.MODEL.GROUP_NORM = CN()
# Number of dimensions per group in GroupNorm (-1 if using NUM_GROUPS)
_C.MODEL.GROUP_NORM.DIM_PER_GP = -1
# Number of groups in GroupNorm (-1 if using DIM_PER_GP)
_C.MODEL.GROUP_NORM.NUM_GROUPS = 16
# GroupNorm's small constant in the denominator
_C.MODEL.GROUP_NORM.EPSILON = 1e-5
# ---------------------------------------------------------------------------- #
# Evo Norm options
# ---------------------------------------------------------------------------- #
_C.MODEL.EVO_NORM = CN()
# Number of groups in EvoNorm (-1 if using DIM_PER_GP)
_C.MODEL.EVO_NORM.NUM_GROUPS = 8
# EvoNorm's small constant in the denominator
_C.MODEL.EVO_NORM.EPSILON = 1e-5
# ---------------------------------------------------------------------------- #
# RetinaNet Options (Follow the Detectron version)
# ---------------------------------------------------------------------------- #
_C.MODEL.RETINANET = CN()
# This is the number of foreground classes and background.
_C.MODEL.RETINANET.NUM_CLASSES = 81
# Convolutions to use in the cls and bbox tower
# NOTE: this doesn't include the last conv for logits
_C.MODEL.RETINANET.NUM_CONVS = 4
# During inference, #locs to select based on cls score before NMS is performed
# per FPN level
_C.MODEL.RETINANET.PRE_NMS_TOP_N = 1000
# Prior prob for the positives at the beginning of training. This is used to set
# the bias init for the logits layer
_C.MODEL.RETINANET.PRIOR_PROB = 0.01
# Inference cls score threshold, anchors with score > INFERENCE_TH are
# considered for inference
_C.MODEL.RETINANET.INFERENCE_TH = 0.05
# NMS threshold used in RetinaNet
_C.MODEL.RETINANET.NMS_TH = 0.4
_C.MODEL.RETINANET.DETECTIONS_PER_IMG = 100
# ---------------------------------------------------------------------------- #
# Focal Loss Options (Follow the Detectron version)
# ---------------------------------------------------------------------------- #
_C.MODEL.FOCAL = CN()
# Weight for bbox_regression loss
_C.MODEL.FOCAL.BBOX_REG_WEIGHT = 4.0
# Smooth L1 loss beta for bbox regression
_C.MODEL.FOCAL.BBOX_REG_BETA = 0.11
# IoU overlap ratio for labeling an anchor as positive
# Anchors with >= iou overlap are labeled positive
_C.MODEL.FOCAL.FG_IOU_THRESHOLD = 0.5
# IoU overlap ratio for labeling an anchor as negative
# Anchors with < iou overlap are labeled negative
_C.MODEL.FOCAL.BG_IOU_THRESHOLD = 0.4
# Focal loss parameter: alpha
_C.MODEL.FOCAL.LOSS_ALPHA = 0.25
# Focal loss parameter: gamma
_C.MODEL.FOCAL.LOSS_GAMMA = 2.0
# ---------------------------------------------------------------------------- #
# FCOS Options
# ---------------------------------------------------------------------------- #
_C.MODEL.FCOS = CN()
_C.MODEL.FCOS.NUM_CLASSES = 81 # the number of classes including background
_C.MODEL.FCOS.FPN_STRIDES = [8, 16, 32, 64, 128]
_C.MODEL.FCOS.PRIOR_PROB = 0.01
_C.MODEL.FCOS.INFERENCE_TH = 0.05
_C.MODEL.FCOS.NMS_TH = 0.6
_C.MODEL.FCOS.PRE_NMS_TOP_N = 1000
# the number of convolutions used in the cls and bbox tower
_C.MODEL.FCOS.NUM_CONVS = 4
# if use deformable conv to align features
_C.MODEL.FCOS.USE_DFCONV = False
# if CENTER_SAMPLING_RADIUS <= 0, it will disable center sampling
_C.MODEL.FCOS.CENTER_SAMPLING_RADIUS = 0.0
# IOU_LOSS_TYPE can be "iou", "linear_iou" or "giou"
_C.MODEL.FCOS.IOU_LOSS_TYPE = "iou"
_C.MODEL.FCOS.NORM_REG_TARGETS = False
_C.MODEL.FCOS.CENTERNESS_ON_REG = False
_C.MODEL.FCOS.USE_GT_CENTER = False
_C.MODEL.FCOS.DETECTIONS_PER_IMG = 100
_C.MODEL.FCOS.USE_GN = False
_C.MODEL.FCOS.USE_BN = False
_C.MODEL.FCOS.INFERENCE_TH_TRAIN = 0.0
_C.MODEL.FCOS.PRE_NMS_TOP_N_TRAIN = 3000
_C.MODEL.FCOS.POST_NMS_TOP_N_TRAIN = 1000
# ---------------------------------------------------------------------------- #
# ATSS Options
# ---------------------------------------------------------------------------- #
_C.MODEL.ATSS = CN()
_C.MODEL.ATSS.NUM_CLASSES = 81 # the number of classes including background
_C.MODEL.ATSS.PRIOR_PROB = 0.01
_C.MODEL.ATSS.INFERENCE_TH = 0.05
_C.MODEL.ATSS.NMS_TH = 0.6
_C.MODEL.ATSS.PRE_NMS_TOP_N = 1000
# the number of convolutions used in the cls and bbox tower
_C.MODEL.ATSS.NUM_CONVS = 4
# the channels of convolutions used in the cls and bbox tower
_C.MODEL.ATSS.CHANNELS = 128
# if use deformable conv to align features
_C.MODEL.ATSS.USE_DFCONV = False
# topk for selecting candidate positive samples from each level
_C.MODEL.ATSS.TOPK = 9
# Weight for bbox_regression loss
_C.MODEL.ATSS.REG_LOSS_WEIGHT = 2.0
_C.MODEL.ATSS.DETECTIONS_PER_IMG = 100
_C.MODEL.ATSS.USE_GN = False
_C.MODEL.ATSS.USE_BN = False
_C.MODEL.ATSS.USE_DYRELU = False
_C.MODEL.ATSS.USE_SE = False
_C.MODEL.ATSS.INFERENCE_TH_TRAIN = 0.0
_C.MODEL.ATSS.PRE_NMS_TOP_N_TRAIN = 3000
_C.MODEL.ATSS.POST_NMS_TOP_N_TRAIN = 1000
# ---------------------------------------------------------------------------- #
# DYHEAD Options
# ---------------------------------------------------------------------------- #
_C.MODEL.DYHEAD = CN()
_C.MODEL.DYHEAD.NUM_CLASSES = 81 # the number of classes including background
_C.MODEL.DYHEAD.PRIOR_PROB = 0.01
# the number of convolutions used in the cls and bbox tower
_C.MODEL.DYHEAD.NUM_CONVS = 4
# the channels of convolutions used in the cls and bbox tower
_C.MODEL.DYHEAD.CHANNELS = 128
_C.MODEL.DYHEAD.GROUPS = 1
# if use deformable conv to align features
_C.MODEL.DYHEAD.USE_DFCONV = False
# topk for selecting candidate positive samples from each level
_C.MODEL.DYHEAD.TOPK = 9
_C.MODEL.DYHEAD.SCORE_AGG = "MEAN" # MEAN or MAX, for binary focal loss score aggregation
_C.MODEL.DYHEAD.LOG_SCALE = 0.0 # temperature (dot product)
_C.MODEL.DYHEAD.SHALLOW_LOG_SCALE = 0.0 # # temperature (shallow contrastive)
_C.MODEL.DYHEAD.USE_GN = False
_C.MODEL.DYHEAD.USE_NSYNCBN = False
_C.MODEL.DYHEAD.USE_SYNCBN = False
_C.MODEL.DYHEAD.USE_DYFUSE = False
_C.MODEL.DYHEAD.USE_DYRELU = False
_C.MODEL.DYHEAD.CONV_FUNC = ""
# CosineSimOutputLayers: https://github.com/ucbdrive/few-shot-object-detection/blob/master/fsdet/modeling/roi_heads/fast_rcnn.py#L448-L464
_C.MODEL.DYHEAD.COSINE_SCALE = -1.0
_C.MODEL.DYHEAD.FUSE_CONFIG = CN()
_C.MODEL.DYHEAD.FUSE_CONFIG.EARLY_FUSE_ON = False
_C.MODEL.DYHEAD.FUSE_CONFIG.TYPE = ""
_C.MODEL.DYHEAD.FUSE_CONFIG.JOINT_EMB_SIZE = 256
_C.MODEL.DYHEAD.FUSE_CONFIG.JOINT_OUT_SIZE = 256
_C.MODEL.DYHEAD.FUSE_CONFIG.JOINT_EMB_DROPOUT = 0.1
_C.MODEL.DYHEAD.FUSE_CONFIG.JOINT_MLP_LAYERS = 2
_C.MODEL.DYHEAD.FUSE_CONFIG.USE_CLASSIFICATION_LOSS = False
_C.MODEL.DYHEAD.FUSE_CONFIG.USE_TOKEN_LOSS = False
_C.MODEL.DYHEAD.FUSE_CONFIG.TOKEN_LOSS_WEIGHT = 1.0
_C.MODEL.DYHEAD.FUSE_CONFIG.TOKEN_GAMMA = 2.0
_C.MODEL.DYHEAD.FUSE_CONFIG.TOKEN_ALPHA = 0.25
_C.MODEL.DYHEAD.FUSE_CONFIG.USE_DOT_PRODUCT_TOKEN_LOSS = False
_C.MODEL.DYHEAD.FUSE_CONFIG.USE_CONTRASTIVE_ALIGN_LOSS = False
_C.MODEL.DYHEAD.FUSE_CONFIG.CONTRASTIVE_HIDDEN_DIM = 64
_C.MODEL.DYHEAD.FUSE_CONFIG.CONTRASTIVE_ALIGN_LOSS_WEIGHT = 1.0
_C.MODEL.DYHEAD.FUSE_CONFIG.DOT_PRODUCT_TOKEN_LOSS_WEIGHT = 1.0
_C.MODEL.DYHEAD.FUSE_CONFIG.USE_LAYER_SCALE = True
_C.MODEL.DYHEAD.FUSE_CONFIG.SEPARATE_BIDIRECTIONAL = False
_C.MODEL.DYHEAD.FUSE_CONFIG.STABLE_SOFTMAX_2D = False
_C.MODEL.DYHEAD.FUSE_CONFIG.DO_LANG_PROJ_OUTSIDE_CHECKPOINT = False
_C.MODEL.DYHEAD.FUSE_CONFIG.USE_FUSED_FEATURES_DOT_PRODUCT = False
# Controls for
_C.MODEL.DYHEAD.FUSE_CONFIG.CLAMP_MIN_FOR_UNDERFLOW = False
_C.MODEL.DYHEAD.FUSE_CONFIG.CLAMP_MAX_FOR_OVERFLOW = False
_C.MODEL.DYHEAD.FUSE_CONFIG.CLAMP_BERTATTN_MIN_FOR_UNDERFLOW = False
_C.MODEL.DYHEAD.FUSE_CONFIG.CLAMP_BERTATTN_MAX_FOR_OVERFLOW = False
_C.MODEL.DYHEAD.FUSE_CONFIG.CLAMP_DOT_PRODUCT = False
# MLM Loss
_C.MODEL.DYHEAD.FUSE_CONFIG.MLM_LOSS = False
_C.MODEL.DYHEAD.FUSE_CONFIG.MLM_LOSS_FOR_ONLY_POSITIVES = True
_C.MODEL.DYHEAD.FUSE_CONFIG.NO_MASK_FOR_OD = False
_C.MODEL.DYHEAD.FUSE_CONFIG.NO_MASK_FOR_GOLD = False
_C.MODEL.DYHEAD.FUSE_CONFIG.MLM_LOSS_COEF = 1.0
_C.MODEL.DYHEAD.FUSE_CONFIG.MLM_OBJ_FOR_ONLY_POSITIVE = False
# Shallow Contrastive Loss (FPN)
_C.MODEL.DYHEAD.FUSE_CONFIG.USE_SHALLOW_CONTRASTIVE_LOSS = False
_C.MODEL.DYHEAD.FUSE_CONFIG.SHALLOW_MAX_POSITIVE_ANCHORS = 100
_C.MODEL.DYHEAD.FUSE_CONFIG.USE_SHALLOW_ZERO_PADS = False
_C.MODEL.DYHEAD.FUSE_CONFIG.SHALLOW_CONTRASTIVE_HIDDEN_DIM = 64
_C.MODEL.DYHEAD.FUSE_CONFIG.SHALLOW_CONTRASTIVE_LOSS_WEIGHT = 1.0
# Span Loss
_C.MODEL.DYHEAD.FUSE_CONFIG.USE_SPAN_LOSS = False # will reuse the green light span field to indicate span boundary
_C.MODEL.DYHEAD.FUSE_CONFIG.SPAN_VERSION = None
_C.MODEL.DYHEAD.FUSE_CONFIG.MUTE_NOOBJ_TOKEN = False
# Shallow Contrastive Loss (BACKBONE)
_C.MODEL.DYHEAD.FUSE_CONFIG.USE_BACKBONE_SHALLOW_CONTRASTIVE_LOSS = False
_C.MODEL.DYHEAD.FUSE_CONFIG.ADD_LINEAR_LAYER = False
# Mute non-essential tokens
_C.MODEL.DYHEAD.FUSE_CONFIG.MUTE_NON_ESSENTIAL_TOKENS = False
# use checkpoint to save memory
_C.MODEL.DYHEAD.USE_CHECKPOINT = False
# ---------------------------------------------------------------------------- #
# DYDETR Options
# ---------------------------------------------------------------------------- #
_C.MODEL.DYDETR = CN()
_C.MODEL.DYDETR.NHEADS = 8
_C.MODEL.DYDETR.DROPOUT = 0.0
_C.MODEL.DYDETR.DIM_FEEDFORWARD = 2048
_C.MODEL.DYDETR.ACTIVATION = "relu"
_C.MODEL.DYDETR.HIDDEN_DIM = 256
_C.MODEL.DYDETR.NUM_CLS = 1
_C.MODEL.DYDETR.NUM_REG = 3
_C.MODEL.DYDETR.NUM_HEADS = 6
_C.MODEL.DYDETR.NUM_CLASSES = 81
_C.MODEL.DYDETR.NUM_PROPOSALS = 300
# Dynamic Conv.
_C.MODEL.DYDETR.NUM_DYNAMIC = 2
_C.MODEL.DYDETR.DIM_DYNAMIC = 64
# Loss.
_C.MODEL.DYDETR.CLASS_WEIGHT = 2.0
_C.MODEL.DYDETR.GIOU_WEIGHT = 2.0
_C.MODEL.DYDETR.L1_WEIGHT = 5.0
_C.MODEL.DYDETR.DEEP_SUPERVISION = True
_C.MODEL.DYDETR.NO_OBJECT_WEIGHT = 0.1
# Focal Loss.
_C.MODEL.DYDETR.USE_FOCAL = True
_C.MODEL.DYDETR.ALPHA = 0.25
_C.MODEL.DYDETR.GAMMA = 2.0
_C.MODEL.DYDETR.PRIOR_PROB = 0.01
_C.MODEL.DYDETR.APPEND_BOX = False
# GROUNDING RELATED
_C.MODEL.DYDETR.INCLUDE_LANGUAGE_DECODER = False
_C.MODEL.DYDETR.USE_DOT_PRODUCT_TOKEN_LOSS = False
_C.MODEL.DYDETR.LOG_SCALE = 0.0 # temperature
_C.MODEL.DYDETR.RESET_PARAMETERS = True
_C.MODEL.DYDETR.USE_GROUNDING_MATCHER_SETCRITERION = False
_C.MODEL.DYDETR.MDETR_PLAIN_INFERENCE = False
_C.MODEL.DYDETR.OVERRIDE_LANGUAGE_MODEL_FOR_TOKEN_LOSS = False
_C.MODEL.DYDETR.NORMALIZE_PER_BOX = False
_C.MODEL.DYDETR.RESET_SKIP_DOT_PRODUCT_WEIGHTS = False
_C.MODEL.DYDETR.DEBUG = False
_C.MODEL.DYDETR.AGGREGATE_METHOD = "MEAN"
_C.MODEL.DYDETR.EARLY_FUSE_ON = False
_C.MODEL.DYDETR.DYTOWER_ON = False
_C.MODEL.DYDETR.USE_FUSED_LANGUAGE_FEATURES = True
# ---------------------------------------------------------------------------- #
# RPN options
# ---------------------------------------------------------------------------- #
_C.MODEL.RPN = CN()
_C.MODEL.RPN.USE_FPN = False
# Base RPN anchor sizes given in absolute pixels w.r.t. the scaled network input
_C.MODEL.RPN.ANCHOR_SIZES = (32, 64, 128, 256, 512)
# Stride of the feature map that RPN is attached.
# For FPN, number of strides should match number of scales
_C.MODEL.RPN.ANCHOR_STRIDE = (16,)
# RPN anchor aspect ratios
_C.MODEL.RPN.ASPECT_RATIOS = (0.5, 1.0, 2.0)
# Anchor shift away ration from the center for r,t,l,d
_C.MODEL.RPN.ANCHOR_SHIFT = (0.0, 0.0, 0.0, 0.0)
# Use center to decide anchor size
_C.MODEL.RPN.USE_RELATIVE_SIZE = False
# Remove RPN anchors that go outside the image by RPN_STRADDLE_THRESH pixels
# Set to -1 or a large value, e.g. 100000, to disable pruning anchors
_C.MODEL.RPN.STRADDLE_THRESH = 0
# Anchor scales per octave for complex anchors
_C.MODEL.RPN.OCTAVE = 2.0
_C.MODEL.RPN.SCALES_PER_OCTAVE = 3
# Minimum overlap required between an anchor and ground-truth box for the
# (anchor, gt box) pair to be a positive example (IoU >= FG_IOU_THRESHOLD
# ==> positive RPN example)
_C.MODEL.RPN.FG_IOU_THRESHOLD = 0.7
# Maximum overlap allowed between an anchor and ground-truth box for the
# (anchor, gt box) pair to be a negative examples (IoU < BG_IOU_THRESHOLD
# ==> negative RPN example)
_C.MODEL.RPN.BG_IOU_THRESHOLD = 0.3
# Total number of RPN examples per image
_C.MODEL.RPN.BATCH_SIZE_PER_IMAGE = 256
# Target fraction of foreground (positive) examples per RPN minibatch
_C.MODEL.RPN.POSITIVE_FRACTION = 0.5
# Number of top scoring RPN proposals to keep before applying NMS
# When FPN is used, this is *per FPN level* (not total)
_C.MODEL.RPN.PRE_NMS_TOP_N_TRAIN = 12000
_C.MODEL.RPN.PRE_NMS_TOP_N_TEST = 6000
# Number of top scoring RPN proposals to keep after applying NMS
_C.MODEL.RPN.POST_NMS_TOP_N_TRAIN = 2000
_C.MODEL.RPN.POST_NMS_TOP_N_TEST = 1000
# NMS threshold used on RPN proposals
_C.MODEL.RPN.NMS_THRESH = 0.7
# Proposal height and width both need to be greater than RPN_MIN_SIZE
# (a the scale used during training or inference)
_C.MODEL.RPN.MIN_SIZE = 0
# Number of top scoring RPN proposals to keep after combining proposals from
# all FPN levels
_C.MODEL.RPN.FPN_POST_NMS_TOP_N_TRAIN = 2000
_C.MODEL.RPN.FPN_POST_NMS_TOP_N_TEST = 2000
# Custom rpn head, empty to use default conv or separable conv
_C.MODEL.RPN.RPN_HEAD = "SingleConvRPNHead"
_C.MODEL.RPN.FREEZE = False
_C.MODEL.RPN.FORCE_BOXES = False
_C.MODEL.RPN.RETURN_FUSED_FEATURES = False
# ---------------------------------------------------------------------------- #
# ROI HEADS options
# ---------------------------------------------------------------------------- #
_C.MODEL.ROI_HEADS = CN()
_C.MODEL.ROI_HEADS.USE_FPN = False
# Overlap threshold for an RoI to be considered foreground (if >= FG_IOU_THRESHOLD)
_C.MODEL.ROI_HEADS.FG_IOU_THRESHOLD = 0.5
# Overlap threshold for an RoI to be considered background
# (class = 0 if overlap in [0, BG_IOU_THRESHOLD))
_C.MODEL.ROI_HEADS.BG_IOU_THRESHOLD = 0.5
# Default weights on (dx, dy, dw, dh) for normalizing bbox regression targets
# These are empirically chosen to approximately lead to unit variance targets
_C.MODEL.ROI_HEADS.BBOX_REG_WEIGHTS = (10.0, 10.0, 5.0, 5.0)
# RoI minibatch size *per image* (number of regions of interest [ROIs])
# Total number of RoIs per training minibatch =
# TRAIN.BATCH_SIZE_PER_IM * TRAIN.IMS_PER_BATCH * NUM_GPUS
# E.g., a common configuration is: 512 * 2 * 8 = 8192
_C.MODEL.ROI_HEADS.BATCH_SIZE_PER_IMAGE = 512
# Target fraction of RoI minibatch that is labeled foreground (i.e. class > 0)
_C.MODEL.ROI_HEADS.POSITIVE_FRACTION = 0.25
# Only used on test mode
# Minimum score threshold (assuming scores in a [0, 1] range); a value chosen to
# balance obtaining high recall with not having too many low precision
# detections that will slow down inference post processing steps (like NMS)
_C.MODEL.ROI_HEADS.SCORE_THRESH = 0.05
# Overlap threshold used for non-maximum suppression (suppress boxes with
# IoU >= this threshold)
_C.MODEL.ROI_HEADS.NMS = 0.5
# Maximum number of detections to return per image (100 is based on the limit
# established for the COCO dataset)
_C.MODEL.ROI_HEADS.DETECTIONS_PER_IMG = 100
_C.MODEL.ROI_BOX_HEAD = CN()
_C.MODEL.ROI_BOX_HEAD.FEATURE_EXTRACTOR = "ResNet50Conv5ROIFeatureExtractor"
_C.MODEL.ROI_BOX_HEAD.PREDICTOR = "FastRCNNPredictor"
_C.MODEL.ROI_BOX_HEAD.POOLER_RESOLUTION = 14
_C.MODEL.ROI_BOX_HEAD.POOLER_SAMPLING_RATIO = 0
_C.MODEL.ROI_BOX_HEAD.POOLER_SCALES = (1.0 / 16,)
_C.MODEL.ROI_BOX_HEAD.NUM_CLASSES = 81
# Hidden layer dimension when using an MLP for the RoI box head
_C.MODEL.ROI_BOX_HEAD.MLP_HEAD_DIM = 1024
# GN
_C.MODEL.ROI_BOX_HEAD.USE_GN = False
# Dilation
_C.MODEL.ROI_BOX_HEAD.DILATION = 1
_C.MODEL.ROI_BOX_HEAD.CONV_HEAD_DIM = 256
_C.MODEL.ROI_BOX_HEAD.NUM_STACKED_CONVS = 4
# Use D2 style ROIAlignV2
_C.MODEL.ROI_BOX_HEAD.POOLER_ALIGNED = False
_C.MODEL.ROI_MASK_HEAD = CN()
_C.MODEL.ROI_MASK_HEAD.FEATURE_EXTRACTOR = "ResNet50Conv5ROIFeatureExtractor"
_C.MODEL.ROI_MASK_HEAD.PREDICTOR = "MaskRCNNC4Predictor"
_C.MODEL.ROI_MASK_HEAD.POOLER_RESOLUTION = 14
_C.MODEL.ROI_MASK_HEAD.POOLER_SAMPLING_RATIO = 0
_C.MODEL.ROI_MASK_HEAD.POOLER_SCALES = (1.0 / 16,)
_C.MODEL.ROI_MASK_HEAD.MLP_HEAD_DIM = 1024
_C.MODEL.ROI_MASK_HEAD.CONV_LAYERS = (256, 256, 256, 256)
_C.MODEL.ROI_MASK_HEAD.RESOLUTION = 14
_C.MODEL.ROI_MASK_HEAD.SHARE_BOX_FEATURE_EXTRACTOR = True
# Whether or not resize and translate masks to the input image.
_C.MODEL.ROI_MASK_HEAD.POSTPROCESS_MASKS = False
_C.MODEL.ROI_MASK_HEAD.POSTPROCESS_MASKS_THRESHOLD = 0.5
# Dilation
_C.MODEL.ROI_MASK_HEAD.DILATION = 1
# GN
_C.MODEL.ROI_MASK_HEAD.USE_GN = False
# HG
_C.MODEL.ROI_MASK_HEAD.HG_SCALE = 1
_C.MODEL.ROI_KEYPOINT_HEAD = CN()
_C.MODEL.ROI_KEYPOINT_HEAD.FEATURE_EXTRACTOR = "KeypointRCNNFeatureExtractor"
_C.MODEL.ROI_KEYPOINT_HEAD.PREDICTOR = "KeypointRCNNPredictor"
_C.MODEL.ROI_KEYPOINT_HEAD.POOLER_RESOLUTION = 14
_C.MODEL.ROI_KEYPOINT_HEAD.POOLER_SAMPLING_RATIO = 0
_C.MODEL.ROI_KEYPOINT_HEAD.POOLER_SCALES = (1.0 / 16,)
_C.MODEL.ROI_KEYPOINT_HEAD.MLP_HEAD_DIM = 1024
_C.MODEL.ROI_KEYPOINT_HEAD.CONV_LAYERS = tuple(512 for _ in range(8))
_C.MODEL.ROI_KEYPOINT_HEAD.RESOLUTION = 14
_C.MODEL.ROI_KEYPOINT_HEAD.NUM_CLASSES = 17
_C.MODEL.ROI_KEYPOINT_HEAD.KEYPOINT_NAME = () # If left empty, use default names
_C.MODEL.ROI_KEYPOINT_HEAD.SHARE_BOX_FEATURE_EXTRACTOR = True
# ---------------------------------------------------------------------------- #
# ResNe[X]t options (ResNets = {ResNet, ResNeXt}
# Note that parts of a resnet may be used for both the backbone and the head
# These options apply to both
# ---------------------------------------------------------------------------- #
_C.MODEL.RESNETS = CN()
_C.MODEL.RESNETS.USE_STEM3X3 = False
_C.MODEL.RESNETS.WITH_SE = False
_C.MODEL.RESNETS.USE_AVG_DOWN = False
# Number of groups to use; 1 ==> ResNet; > 1 ==> ResNeXt
_C.MODEL.RESNETS.NUM_GROUPS = 1
# Baseline width of each group
_C.MODEL.RESNETS.WIDTH_PER_GROUP = 64
# Place the stride 2 conv on the 1x1 filter
# Use True only for the original MSRA ResNet; use False for C2 and Torch models
_C.MODEL.RESNETS.STRIDE_IN_1X1 = True
# Residual transformation function
_C.MODEL.RESNETS.TRANS_FUNC = "BottleneckWithFixedBatchNorm"
# ResNet's stem function (conv1 and pool1)
_C.MODEL.RESNETS.STEM_FUNC = "StemWithFixedBatchNorm"
# Apply dilation in stage "res5"
_C.MODEL.RESNETS.RES5_DILATION = 1
_C.MODEL.RESNETS.BACKBONE_OUT_CHANNELS = 256 * 4
_C.MODEL.RESNETS.RES2_OUT_CHANNELS = 256
_C.MODEL.RESNETS.STEM_OUT_CHANNELS = 64
_C.MODEL.RESNETS.REVISION = "resnet_light"
# Deformable convolutions
_C.MODEL.RESNETS.STAGE_WITH_DCN = (False, False, False, False)
_C.MODEL.RESNETS.WITH_MODULATED_DCN = False
_C.MODEL.RESNETS.DEFORMABLE_GROUPS = 1
# ---------------------------------------------------------------------------- #
# Swin Transformer
# ---------------------------------------------------------------------------- #
_C.MODEL.SWINT = CN()
_C.MODEL.SWINT.EMBED_DIM = 96
_C.MODEL.SWINT.OUT_CHANNELS = (96, 192, 384, 768)
_C.MODEL.SWINT.DEPTHS = (2, 2, 6, 2)
_C.MODEL.SWINT.NUM_HEADS = (3, 6, 12, 24)
_C.MODEL.SWINT.WINDOW_SIZE = 7
_C.MODEL.SWINT.MLP_RATIO = 4
_C.MODEL.SWINT.DROP_PATH_RATE = 0.2
_C.MODEL.SWINT.APE = False
_C.MODEL.SWINT.VERSION = "v1"
_C.MODEL.SWINT.OUT_NORM = True
_C.MODEL.SWINT.LAYER_SCALE = 0
# ---------------------------------------------------------------------------- #
# CVT SPEC
# ---------------------------------------------------------------------------- #
_C.MODEL.SPEC = CN(new_allowed=True)
# ---------------------------------------------------------------------------- #
# CLIP SPEC
# ---------------------------------------------------------------------------- #
_C.MODEL.CLIP = CN()
_C.MODEL.CLIP.CONTEXT_LENGTH = 256 # default 77
_C.MODEL.CLIP.WIDTH = 512
_C.MODEL.CLIP.LAYERS = 12
_C.MODEL.CLIP.HEADS = 8
_C.MODEL.CLIP.DROP_PATH = 0.0
_C.MODEL.CLIP.TOKENIZER = "clip"
_C.MODEL.CLIP.VOCAB_SIZE = 49408
# ---------------------------------------------------------------------------- #
# SEARCH
# ---------------------------------------------------------------------------- #
_C.SEARCH = CN()
_C.SEARCH.MAX_EPOCH = 20
_C.SEARCH.SELECT_NUM = 20
_C.SEARCH.POPULATION_NUM = 64
_C.SEARCH.MUTATION_NUM = 24
_C.SEARCH.CROSSOVER_NUM = 24
_C.SEARCH.MUTATION_PROB = 0.1
# ---------------------------------------------------------------------------- #
# Solver
# ---------------------------------------------------------------------------- #
_C.SOLVER = CN()
_C.SOLVER.USE_AMP = False
_C.SOLVER.MAX_ITER = 40000
_C.SOLVER.MULTI_MAX_ITER = () # set different max epoch for different stage
_C.SOLVER.MAX_EPOCH = 0 # any epoch number>0 will overwrite max_iter
_C.SOLVER.MULTI_MAX_EPOCH = () # set different max epoch for different stage
_C.SOLVER.OPTIMIZER = "SGD" # "ADAMW"
_C.SOLVER.BASE_LR = 0.001
_C.SOLVER.LANG_LR = 0.00001
_C.SOLVER.BACKBONE_BODY_LR_FACTOR = 1.0
_C.SOLVER.FUSION_LR_FACTOR = 1.0
_C.SOLVER.BIAS_LR_FACTOR = 2
_C.SOLVER.GRAD_CLIP = 0.0
# D2 gradient clip
_C.SOLVER.CLIP_GRADIENTS = CN()
_C.SOLVER.CLIP_GRADIENTS.ENABLED = False
_C.SOLVER.CLIP_GRADIENTS.CLIP_VALUE = 0.0
_C.SOLVER.CLIP_GRADIENTS.CLIP_TYPE = "full_model"
_C.SOLVER.CLIP_GRADIENTS.NORM_TYPE = 2.0
_C.SOLVER.MODEL_EMA = 0.0
_C.SOLVER.MOMENTUM = 0.9
_C.SOLVER.WEIGHT_DECAY = 0.0005
_C.SOLVER.WEIGHT_DECAY_BIAS = 0.0
_C.SOLVER.WEIGHT_DECAY_NORM_FACTOR = 1.0
_C.SOLVER.WEIGHT_DECAY_HEAD_FACTOR = 1.0
# use cosine lr to replace default multistage
_C.SOLVER.USE_COSINE = False
_C.SOLVER.MIN_LR = 0.000001
_C.SOLVER.GAMMA = 0.1
_C.SOLVER.STEPS = (30000,)
_C.SOLVER.USE_AUTOSTEP = False
_C.SOLVER.STEP_PATIENCE = 5
_C.SOLVER.WARMUP_FACTOR = 1.0 / 3
_C.SOLVER.WARMUP_ITERS = 500
_C.SOLVER.WARMUP_METHOD = "linear"
_C.SOLVER.CHECKPOINT_PERIOD = 2500
_C.SOLVER.CHECKPOINT_PER_EPOCH = -1.0
_C.SOLVER.TEST_WITH_INFERENCE = False
_C.SOLVER.AUTO_TERMINATE_PATIENCE = -1
# Number of images per batch
# This is global, so if we have 8 GPUs and IMS_PER_BATCH = 16, each GPU will
# see 2 images per batch
_C.SOLVER.IMS_PER_BATCH = 16
# This is the max negative ratio allowed per batch
_C.SOLVER.MAX_NEG_PER_BATCH = 0.1
_C.SOLVER.SEED = 0
_C.SOLVER.DISABLE_OUTPUT_DISTRIBUTED = False
_C.SOLVER.PROMPT_PROBING_LEVEL = -1.0
# -1 means tuning the whole model;
# 1 means tuning the whole language model; 1.5 means tuning the box head as well
_C.SOLVER.FIND_UNUSED_PARAMETERS = True
_C.SOLVER.DATASET_LENGTH = -1 # Just for logging purpose
_C.SOLVER.TUNING_HIGHLEVEL_OVERRIDE = None
_C.SOLVER.USE_EMA_FOR_MONITOR = False
_C.SOLVER.WEIGHT_DECAY_SCHEDULE = False
_C.SOLVER.WEIGHT_DECAY_SCHEDULE_RATIO = 0.667
_C.SOLVER.RESUME_SKIP_SCHEDULE = False # when we resume from a checkpoint, we can skip
# ---------------------------------------------------------------------------- #
# Specific test options
# ---------------------------------------------------------------------------- #
_C.TEST = CN()
_C.TEST.EXPECTED_RESULTS = []
_C.TEST.EXPECTED_RESULTS_SIGMA_TOL = 4
_C.TEST.DURING_TRAINING = False
# Number of images per batch
# This is global, so if we have 8 GPUs and IMS_PER_BATCH = 16, each GPU will
# see 2 images per batch
_C.TEST.IMS_PER_BATCH = 16
# Special Test Configuration
_C.TEST.USE_MULTISCALE = False
# _C.TEST.SCALES = (400, 600, 800, 1000, 1200, 1400)
# _C.TEST.RANGES = ((96, 10000), (64, 10000), (0, 10000), (0, 10000), (0, 256), (0, 192))
_C.TEST.SCALES = (400, 500, 600, 640, 700, 900, 1000, 1100, 1200, 1300, 1400, 1800)
_C.TEST.RANGES = (
(96, 10000),
(96, 10000),
(64, 10000),
(64, 10000),
(64, 10000),
(0, 10000),
(0, 10000),
(0, 256),
(0, 256),
(0, 192),
(0, 192),
(0, 96),
)
_C.TEST.MAX_SIZE = 2500
_C.TEST.FLIP = True
_C.TEST.SPECIAL_NMS = "none" # ('none', 'soft-nms', 'vote', 'soft-vote')
_C.TEST.TH = 0.6 # threshold for nms or vote
_C.TEST.PRE_NMS_TOP_N = 1000
_C.TEST.NUM_CLASSES = 81
_C.TEST.SELECT_CLASSES = ()
_C.TEST.EVAL_TASK = ""
_C.TEST.SUBSET = -1
_C.TEST.CHUNKED_EVALUATION = -1
_C.TEST.MDETR_STYLE_AGGREGATE_CLASS_NUM = -1
_C.TEST.CHUNK_METHOD = "random" # or similar
_C.TEST.CHUNK_INFERENCE_VERSION = "v1" # v2: modify the ATSS inference code slightly to make
# ---------------------------------------------------------------------------- #
# Misc options
# ---------------------------------------------------------------------------- #
_C.OUTPUT_DIR = "OUTPUT"
_C.PATHS_CATALOG = os.path.join(os.path.dirname(__file__), "paths_catalog.py")
# TensorBoard experiment location
_C.TENSORBOARD_EXP = "OUTPUT"
_C.GLIPKNOW = CN()
_C.GLIPKNOW.KNOWLEDGE_FILE = ""
_C.GLIPKNOW.KNOWLEDGE_TYPE = ""
_C.GLIPKNOW.MAX_NUM_CLASSES_PER_BATCH_TRAIN = -1
_C.GLIPKNOW.PARALLEL_LANGUAGE_INPUT = False
_C.GLIPKNOW.LAN_FEATURE_AGG_TYPE = "first"
_C.GLIPKNOW.GPT3_NUM = 5
_C.GLIPKNOW.WIKI_AND_GPT3 = False |