Spaces:
Sleeping
Sleeping
File size: 27,344 Bytes
749745d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 |
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved.
# Set up custom environment before nearly anything else is imported
# NOTE: this should be the first import (no not reorder)
from maskrcnn_benchmark.utils.env import setup_environment # noqa F401 isort:skip
import argparse
import os
import functools
import io
import datetime
import itertools
import json
from tqdm import tqdm
import numpy as np
import torch
import torch.distributed as dist
from collections import defaultdict
from maskrcnn_benchmark.config import cfg
from maskrcnn_benchmark.data import make_data_loader
from maskrcnn_benchmark.engine.inference import inference, create_positive_dict, clean_name
from maskrcnn_benchmark.modeling.detector import build_detection_model
from maskrcnn_benchmark.utils.checkpoint import DetectronCheckpointer
from maskrcnn_benchmark.utils.collect_env import collect_env_info
from maskrcnn_benchmark.utils.comm import synchronize, get_rank, is_main_process, all_gather
from maskrcnn_benchmark.utils.logger import setup_logger
from maskrcnn_benchmark.utils.miscellaneous import mkdir
from maskrcnn_benchmark.utils.stats import get_model_complexity_info
from omnilabeltools import OmniLabel, OmniLabelEval, visualize_image_sample
import time
import json
import tempfile
import matplotlib.pyplot as plt
from transformers import AutoTokenizer, CLIPTokenizerFast
import omnilabeltools as olt
from omnilabeltools import OmniLabel, OmniLabelEval
import pdb
import wandb
from multiprocessing import Pool
class LLM:
def __init__(self, version, prompt_file = None, temp = 1.0):
self.version = version
self.prompt_file = prompt_file
self.temp = temp
with open(self.prompt_file, "r") as f:
self.prompt = f.read()
def __call__(self, entity):
time.sleep(0.1)
success = False
fail_count = 0
if isinstance(entity, list):
prompt = [self.prompt.replace("PROMPT", e) for e in entity]
else:
if self.version == "chat":
raw_prompt = self.prompt.replace("PROMPT", entity)
try:
prompt = json.loads(raw_prompt)
except:
prompt = [{"role": "user", "content": raw_prompt}]
else:
prompt = self.prompt.replace("PROMPT", entity)
while not success:
try:
if self.version == "chat":
model = "gpt-3.5-turbo"
response = openai.ChatCompletion.create(
model=model,
messages = prompt,
temperature=self.temp,
)
else:
if self.version == "curie":
model = "curie"
else:
model = "text-davinci-003"
response = openai.Completion.create(
model=model,
prompt=prompt,
temperature=self.temp,
max_tokens=128,
top_p=1,
frequency_penalty=0.0,
presence_penalty=0.0,
)
success = True
fail_count = 0
except Exception as e:
print(f"Exception: {e}")
time.sleep(0.1)
fail_count += 1
if fail_count > 10:
print("Too many failures")
return "Too many failures"
if isinstance(entity, list):
if self.version == "chat":
return [r["message"]["content"] for r in response["choices"]]
else:
return [r["text"] for r in response["choices"]]
else:
if self.version == "chat":
return response["choices"][0]["message"]["content"]
else:
return response["choices"][0]["text"]
def init_distributed_mode(args):
"""Initialize distributed training, if appropriate"""
if "RANK" in os.environ and "WORLD_SIZE" in os.environ:
args.rank = int(os.environ["RANK"])
args.world_size = int(os.environ["WORLD_SIZE"])
args.gpu = int(os.environ["LOCAL_RANK"])
elif "SLURM_PROCID" in os.environ:
args.rank = int(os.environ["SLURM_PROCID"])
args.gpu = args.rank % torch.cuda.device_count()
else:
print("Not using distributed mode")
args.distributed = False
return
# args.distributed = True
torch.cuda.set_device(args.gpu)
args.dist_backend = "nccl"
print("| distributed init (rank {}): {}".format(args.rank, args.dist_url), flush=True)
dist.init_process_group(
backend=args.dist_backend,
init_method=args.dist_url,
world_size=args.world_size,
rank=args.rank,
timeout=datetime.timedelta(0, 7200),
)
dist.barrier()
setup_for_distributed(args.rank == 0)
def setup_for_distributed(is_master):
"""
This function disables printing when not in master process
"""
import builtins as __builtin__
builtin_print = __builtin__.print
def print(*args, **kwargs):
force = kwargs.pop("force", False)
if is_master or force:
builtin_print(*args, **kwargs)
__builtin__.print = print
def remove_full_stop(description_list):
ret_list = []
for descript in description_list:
if descript[-1] == '.':
descript = descript[:-1] # remove '.'
ret_list.append(descript)
return ret_list
def num_of_words(text):
return len(text.split(' '))
def create_queries_and_maps(labels, label_list, tokenizer, additional_labels=None, cfg=None, center_nouns_length = None, override_tokens_positive = None):
# Clean label list
label_list = [clean_name(i) for i in label_list]
# Form the query and get the mapping
tokens_positive = []
start_i = 0
end_i = 0
objects_query = "Detect: "
#objects_query = ""
prefix_length = len(objects_query)
# sep between tokens, follow training
separation_tokens = cfg.DATASETS.SEPARATION_TOKENS
caption_prompt = cfg.DATASETS.CAPTION_PROMPT
use_caption_prompt = cfg.DATASETS.USE_CAPTION_PROMPT and caption_prompt is not None
for _index, label in enumerate(label_list):
if use_caption_prompt:
objects_query += caption_prompt[_index]["prefix"]
start_i = len(objects_query)
if use_caption_prompt:
objects_query += caption_prompt[_index]["name"]
else:
objects_query += label
if "a kind of " in label:
end_i = len(label.split(",")[0]) + start_i
else:
end_i = len(objects_query)
tokens_positive.append([(start_i, end_i)]) # Every label has a [(start, end)]
if use_caption_prompt:
objects_query += caption_prompt[_index]["suffix"]
if _index != len(label_list) - 1:
objects_query += separation_tokens
if additional_labels is not None:
objects_query += separation_tokens
for _index, label in enumerate(additional_labels):
objects_query += label
if _index != len(additional_labels) - 1:
objects_query += separation_tokens
# print(objects_query)
if cfg.MODEL.LANGUAGE_BACKBONE.TOKENIZER_TYPE == "bert-base-uncased":
tokenized = tokenizer(objects_query, return_tensors="pt")
elif cfg.MODEL.LANGUAGE_BACKBONE.TOKENIZER_TYPE == "roberta-base":
tokenized = tokenizer(objects_query, return_tensors="pt")
elif cfg.MODEL.LANGUAGE_BACKBONE.TOKENIZER_TYPE == "clip":
tokenized = tokenizer(
objects_query, max_length=cfg.MODEL.LANGUAGE_BACKBONE.MAX_QUERY_LEN, truncation=True, return_tensors="pt"
)
else:
raise NotImplementedError
if override_tokens_positive is not None:
new_tokens_positive = []
for override in override_tokens_positive:
new_tokens_positive.append((override[0] + prefix_length, override[1] + prefix_length))
tokens_positive = [new_tokens_positive] # this is because we only have one label
# Create the mapping between tokenized sentence and the original label
# if one_hot:
# positive_map_token_to_label, positive_map_label_to_token = create_one_hot_dict(labels, no_minus_one_for_one_hot=cfg.DATASETS.NO_MINUS_ONE_FOR_ONE_HOT)
# else:
positive_map_token_to_label, positive_map_label_to_token = create_positive_dict(
tokenized, tokens_positive, labels=labels
) # from token position to original label
return objects_query, positive_map_label_to_token
def main():
parser = argparse.ArgumentParser(description="PyTorch Detection to Grounding Inference")
parser.add_argument(
"--config-file",
default="configs/pretrain/glip_Swin_T_O365_GoldG.yaml",
metavar="FILE",
help="path to config file",
)
parser.add_argument(
"--weight",
default=None,
metavar="FILE",
help="path to config file",
)
parser.add_argument("--local_rank", type=int, default=0)
parser.add_argument(
"opts", help="Modify config options using the command-line", default=None, nargs=argparse.REMAINDER
)
parser.add_argument("--world-size", default=1, type=int, help="number of distributed processes")
parser.add_argument("--dist-url", default="env://", help="url used to set up distributed training")
parser.add_argument("--task_config", default=None)
parser.add_argument("--chunk_size", default=20, type=int, help="number of descriptions each time")
parser.add_argument("--threshold", default=None, type=float, help="number of boxes stored in each run")
parser.add_argument("--topk_per_eval", default=None, type=int, help="number of boxes stored in each run")
parser.add_argument("--group_query", action="store_true", help="group query")
parser.add_argument("--noun_phrase_file", default=None, type=str, help="noun phrase file")
args = parser.parse_args()
num_gpus = int(os.environ["WORLD_SIZE"]) if "WORLD_SIZE" in os.environ else 1
distributed = num_gpus > 1
if distributed:
# torch.cuda.set_device(args.local_rank)
# torch.distributed.init_process_group(
# backend="nccl", init_method="env://"
# )
init_distributed_mode(args)
print("Passed distributed init")
cfg.local_rank = args.local_rank
cfg.num_gpus = num_gpus
cfg.merge_from_file(args.config_file)
cfg.merge_from_list(args.opts)
cfg.freeze()
log_dir = cfg.OUTPUT_DIR
if args.weight:
log_dir = os.path.join(log_dir, "eval", os.path.splitext(os.path.basename(args.weight))[0])
if log_dir:
mkdir(log_dir)
logger = setup_logger("maskrcnn_benchmark", log_dir, get_rank())
logger.info(args)
logger.info("Using {} GPUs".format(num_gpus))
logger.info(cfg)
# logger.info("Collecting env info (might take some time)")
# logger.info("\n" + collect_env_info())
device = cfg.MODEL.DEVICE
cpu_device = torch.device("cpu")
model = build_detection_model(cfg)
model.to(device)
# we currently disable this
# params, flops = get_model_complexity_info(model,
# (3, cfg.INPUT.MAX_SIZE_TEST, cfg.INPUT.MIN_SIZE_TEST),
# input_constructor=lambda x: {'images': [torch.rand(x).cuda()]})
# print("FLOPs: {}, #Parameter: {}".format(params, flops))
checkpointer = DetectronCheckpointer(cfg, model, save_dir=cfg.OUTPUT_DIR)
if args.weight:
_ = checkpointer.load(args.weight, force=True)
else:
_ = checkpointer.load(cfg.MODEL.WEIGHT)
if args.weight:
weight_iter = os.path.splitext(os.path.basename(args.weight))[0].split("_")[-1]
try:
weight_iter = int(weight_iter)
except:
weight_iter = 1
else:
weight_iter = 1
# get the wandb name
train_wandb_name = os.path.basename(cfg.OUTPUT_DIR)
eval_wandb_name = train_wandb_name + "_eval" + "_Fixed{}_Chunk{}".format(not cfg.DATASETS.LVIS_USE_NORMAL_AP, cfg.TEST.CHUNKED_EVALUATION)
if is_main_process() and train_wandb_name != "__test__":
api = wandb.Api()
runs = api.runs('haroldli/language_det_eval')
matched_run = None
history = []
exclude_keys = ['_runtime', '_timestamp']
for run in runs:
if run.name == eval_wandb_name and str(run._state) == "finished":
print("run found", run.name)
print(run.summary)
matched_run = run
run_his = matched_run.scan_history()
#print([len(i) for i in run_his])
for stat in run_his:
stat_i = {k: v for k, v in stat.items() if k not in exclude_keys and v is not None}
if len(stat_i) > 1:
history.append(stat_i)
#matched_run.delete()
break # only update one
wandb_run = wandb.init(
project = 'language_det_eval',
job_type = 'evaluate',
name = eval_wandb_name,
)
#pprint(history)
# exclude_keys = ['_step', '_runtime', '_timestamp']
# for stat in history:
# wandb.log(
# {k: v for k, v in stat.items() if k not in exclude_keys},
# step = stat['_step'],
# )
else:
wandb_run = None
history = None
print("weight_iter: ", weight_iter)
print("train_wandb_name: ", train_wandb_name)
print("eval_wandb_name: ", eval_wandb_name)
# build tokenizer to process data
# tokenizer = AutoTokenizer.from_pretrained("bert-base-uncased")
if cfg.MODEL.LANGUAGE_BACKBONE.TOKENIZER_TYPE == "bert-base-uncased":
tokenizer = AutoTokenizer.from_pretrained("bert-base-uncased")
elif cfg.MODEL.LANGUAGE_BACKBONE.TOKENIZER_TYPE == "roberta-base":
tokenizer = AutoTokenizer.from_pretrained("roberta-base")
elif cfg.MODEL.LANGUAGE_BACKBONE.TOKENIZER_TYPE == "clip":
if cfg.MODEL.DYHEAD.FUSE_CONFIG.MLM_LOSS:
tokenizer = CLIPTokenizerFast.from_pretrained(
"openai/clip-vit-base-patch32", from_slow=True, mask_token="ðŁĴij</w>"
)
else:
tokenizer = CLIPTokenizerFast.from_pretrained("openai/clip-vit-base-patch32", from_slow=True)
else:
tokenizer = None
raise NotImplementedError
### inference & evaluation
topk_per_eval = args.topk_per_eval
threshold = args.threshold
model.eval()
chunk_size = args.chunk_size # num of texts each time
if cfg.MODEL.RPN_ARCHITECTURE == "VLDYHEAD":
class_plus = 1
else:
class_plus = 0
task_config = args.task_config
assert task_config is not None, "task_config should be assigned"
cfg_ = cfg.clone()
cfg_.defrost()
cfg_.merge_from_file(task_config)
cfg_.merge_from_list(args.opts)
dataset_name = cfg_.DATASETS.TEST[0]
output_folder = os.path.join(log_dir, "inference", dataset_name)
if not os.path.exists(output_folder):
mkdir(output_folder)
data_loaders_val = make_data_loader(cfg_, is_train=False, is_distributed=distributed)
_iterator = tqdm(data_loaders_val[0]) # only for the first test set
predictions = []
# adhoclly
# if "coco" in cfg_.DATASETS.TEST[0]:
# gt_json = 'DATASET/omnilabel/dataset_all_val_v0.1.3_coco.json'
# elif "oi_v5" in cfg_.DATASETS.TEST[0]:
# gt_json = 'DATASET/omnilabel/dataset_all_val_v0.1.3_openimagesv5.json'
# elif "oi_v6" in cfg_.DATASETS.TEST[0]:
# gt_json = 'DATASET/omnilabel/dataset_all_val_v0.1.3_openimagesv6.json'
# else:
# assert(0)
# omni_label = OmniLabel(path_json=gt_json)
if args.noun_phrase_file is not None:
try:
noun_phrase = json.load(open(args.noun_phrase_file))
except:
noun_phrase = {}
print("No noun phrase file found, will generate one")
llm = LLM(version="chat", prompt_file="tools/data_process/prompts/noun.v1.txt", temp=0.0)
else:
noun_phrase = {}
# stats
pos_rates = []
query_length = []
all_info = []
for iidx, batch in enumerate(_iterator):
images, targets, image_ids, *_ = batch
# import ipdb
# ipdb.set_trace()
images = images.to(device)
text_queries = targets[0].get_field('inference_obj_descriptions')
text_queries_ids = targets[0].get_field("inference_obj_description_ids")
image_size = targets[0].size
image_id = image_ids[0]
# pdb.set_trace()
#print(data_loaders_val[0].dataset.dataset_dicts[iidx])
#all_info.append(data_loaders_val[0].dataset.dataset_dicts[iidx])
# get the positive label if there is one
try:
positive_info = omni_label.get_image_sample(image_id)
positive_instances = positive_info['instances']
positive_labels = []
for i in positive_instances: positive_labels.extend(i['description_ids'])
positive_labels = list(set(positive_labels))
except:
positive_labels = None
des_id_start = 0
# rearrange the queries
query_indexes = [i for i in range(len(text_queries_ids)) if num_of_words(text_queries[i]) > 2]
cat_indexes = [i for i in range(len(text_queries_ids)) if num_of_words(text_queries[i]) <= 2]
# rearrange the queries
if args.group_query:
text_queries_ids = [text_queries_ids[i] for i in query_indexes] + [text_queries_ids[i] for i in cat_indexes]
text_queries = [text_queries[i] for i in query_indexes] + [text_queries[i] for i in cat_indexes]
while des_id_start < len(text_queries_ids):
# sinlge descriptions each time
if args.group_query:
if num_of_words(text_queries[des_id_start]) > 2:
description_list = remove_full_stop(text_queries[des_id_start:des_id_start+8])
description_id_list = text_queries_ids[des_id_start:des_id_start+8]
des_id_start += 8
else:
description_list = remove_full_stop(text_queries[des_id_start:des_id_start+chunk_size])
description_id_list = text_queries_ids[des_id_start:des_id_start+chunk_size]
des_id_start += chunk_size
else:
if num_of_words(text_queries[des_id_start]) > 2:
_det_phrase = True
description_list = remove_full_stop([text_queries[des_id_start]])
description_id_list = [text_queries_ids[des_id_start]]
des_id_start += 1
else:
_det_phrase = False
description_list = remove_full_stop(text_queries[des_id_start:des_id_start+chunk_size])
description_id_list = text_queries_ids[des_id_start:des_id_start+chunk_size]
des_id_start += chunk_size
# create postive map, always use continuous labels starting from 1
continue_labels = np.arange(0, chunk_size) + class_plus
if _det_phrase and args.noun_phrase_file is not None:
# try to find the centern noun phrase
center_noun = noun_phrase.get(description_list[0], None)
if center_noun is None:
center_noun = llm(description_list[0])
if len(center_noun) == 0:
center_noun = description_list[0] # failed case
noun_phrase[description_list[0]] = center_noun
start = description_list[0].lower().find(center_noun.lower())
end = start + len(center_noun)
override_tokens_positive = [(start, end)]
print(description_list[0], center_noun, override_tokens_positive)
cur_queries, positive_map_label_to_token = create_queries_and_maps(continue_labels, description_list, tokenizer, cfg=cfg, override_tokens_positive=override_tokens_positive)
else:
cur_queries, positive_map_label_to_token = create_queries_and_maps(continue_labels, description_list, tokenizer, cfg=cfg)
set_description_id_list = set(description_id_list)
# intersection between positive labels and current description ids
if positive_labels is not None:
pos_rate = len(set_description_id_list.intersection(set(positive_labels))) / len(set_description_id_list)
pos_rates.append(pos_rate)
query_length.append(len(set_description_id_list))
# print(cur_queries)
with torch.no_grad():
output = model(images, captions=[cur_queries], positive_map=positive_map_label_to_token)
output = output[0].to(cpu_device).convert(mode="xywh")
output = output.resize(image_size) # to the oringinal scale
# print(output)
# import ipdb
# ipdb.set_trace()
# thresolding
if threshold is not None:
scores = output.get_field('scores')
output = output[scores > threshold]
# sorted by scores
if topk_per_eval is not None:
scores = output.get_field('scores')
_, sortIndices = scores.sort(descending=True)
output = output[sortIndices]
# topk
output = output[:topk_per_eval]
# map continuous id to description id
cont_ids_2_descript_ids = {i:v for i, v in enumerate(description_id_list)}
pred_boxes = output.bbox
pred_labels = output.get_field('labels') - class_plus # continuous ids, starting from 0
pred_scores = output.get_field('scores')
# convert continuous id to description id
for box_idx, box in enumerate(pred_boxes):
predictions.append({
"image_id": image_id,
"bbox": box.cpu().tolist(),
"description_ids": [cont_ids_2_descript_ids[pred_labels[box_idx].item()]],
"scores": [pred_scores[box_idx].item()],
})
#print("pos_rate: %.2f"%(np.mean(pos_rates)), pos_rates)
#print("query_length: %.2f"%(np.mean(query_length)), query_length)
# draw a histogram of pos_rate
plt.hist(pos_rates, bins=10)
plt.savefig(os.path.join(output_folder, "pos_rate.png"))
plt.close()
if args.noun_phrase_file is not None:
with open(args.noun_phrase_file, "w") as f:
json.dump(noun_phrase, f, indent=4)
# collect predictions from all GPUs
synchronize()
all_predictions = all_gather(predictions)
all_predictions = list(itertools.chain(*all_predictions))
if not is_main_process():
return
result_save_json = "%s_results.json"%(dataset_name)
results_path = os.path.join(output_folder, result_save_json)
print('Saving to', results_path)
json.dump(all_predictions, open(results_path, 'w'))
from maskrcnn_benchmark.config.paths_catalog import DatasetCatalog
datasetMeta = DatasetCatalog.get(dataset_name)
gt_path_json = datasetMeta['args']['ann_file']
# import ipdb
# ipdb.set_trace()
# evaluation
gt = OmniLabel(gt_path_json) # load ground truth dataset
dt = gt.load_res(results_path) # load prediction results
ole = OmniLabelEval(gt, dt)
# ole.params.resThrs = ... # set evaluation parameters as desired
ole.evaluate()
ole.accumulate()
score = ole.summarize()
# OUTPUTS/GLIP_MODEL17/eval/model_0270000/inference/omnilabel_val/omnilabel_val_results.json
#with open("tools/files/omnilabel_coco.json", "a") as f:
# json.dump(all_info, f)
if is_main_process():
if wandb_run is not None:
#
dataset_name = cfg.DATASETS.TEST[0]
write_to_wandb_log(score, dataset_name, weight_iter, history)
with open("{}/detailed.json".format(output_folder), "w") as f:
json.dump(score, f)
wandb_run.save("{}/detailed.json".format(output_folder))
print(score)
def write_to_wandb_log(score, dataset_name, weight_iter, history):
all_results = defaultdict(dict)
exclude_keys = ['_step', '_runtime', '_timestamp']
if history is not None:
for stat in history:
all_results[stat['_step']].update({k: v for k, v in stat.items() if k not in exclude_keys})
result_dict = {}
for score_i in score:
if score_i["metric"]['metric'] == "AP" and score_i["metric"]['iou'] == "0.50:0.95" and score_i["metric"]['area'] == "all":
result_dict[f"{dataset_name}_AP_{score_i['metric']['description']}"] = score_i['value']
#wandb.log({f"{dataset_name}_mAP_all": mAP_all, f"{dataset_name}_mAP_rare": mAP_rare, f"{dataset_name}_mAP_common": mAP_common, f"{dataset_name}_mAP_frequent": mAP_frequent}, step = weight_iter)
all_results[weight_iter].update(result_dict)
# sort all results
max_key = max(all_results.keys())
for i in range(max_key + 1):
if i in all_results:
wandb.log(all_results[i], step = i)
else:
wandb.log({}, step = i)
# for k in sorted(all_results.keys()):
# # need to do consecutive logging
# wandb.log(all_results[k], step = k)
if __name__ == "__main__":
main()
'''
from omnilabeltools import OmniLabel, OmniLabelEval
gt = OmniLabel('DATASET/omnilabel/dataset_all_val_v0.1.3_openimagesv5.json') # load ground truth dataset
dt = gt.load_res("OUTPUTS/GLIP_MODEL17/eval/model_0270000/inference/omnilabel_val/omnilabel_val_results.json") # load prediction results
ole = OmniLabelEval(gt, dt)
ole.evaluate()
ole.accumulate()
ole.summarize()
gt = OmniLabel('DATASET/omnilabel/dataset_all_val_v0.1.3_coco.json') # load ground truth dataset
dt = gt.load_res("OUTPUTS/GLIP_MODEL17/eval/model_0270000/inference/omnilabel_val/omnilabel_val_results.json")
gt = OmniLabel('DATASET/omnilabel/dataset_all_val_v0.1.3_object365.json') # load ground truth dataset
dt = gt.load_res("OUTPUTS/GLIP_MODEL17/eval/model_0270000/inference/omnilabel_val/omnilabel_val_results.json")
'''
|