File size: 27,344 Bytes
749745d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved.
# Set up custom environment before nearly anything else is imported
# NOTE: this should be the first import (no not reorder)
from maskrcnn_benchmark.utils.env import setup_environment  # noqa F401 isort:skip

import argparse
import os
import functools
import io
import datetime
import itertools
import json
from tqdm import tqdm

import numpy as np
import torch
import torch.distributed as dist
from collections import defaultdict
from maskrcnn_benchmark.config import cfg
from maskrcnn_benchmark.data import make_data_loader
from maskrcnn_benchmark.engine.inference import inference, create_positive_dict, clean_name
from maskrcnn_benchmark.modeling.detector import build_detection_model
from maskrcnn_benchmark.utils.checkpoint import DetectronCheckpointer
from maskrcnn_benchmark.utils.collect_env import collect_env_info
from maskrcnn_benchmark.utils.comm import synchronize, get_rank, is_main_process, all_gather
from maskrcnn_benchmark.utils.logger import setup_logger
from maskrcnn_benchmark.utils.miscellaneous import mkdir
from maskrcnn_benchmark.utils.stats import get_model_complexity_info
from omnilabeltools import OmniLabel, OmniLabelEval, visualize_image_sample
import time
import json
import tempfile
import matplotlib.pyplot as plt
from transformers import AutoTokenizer, CLIPTokenizerFast
import omnilabeltools as olt
from omnilabeltools import OmniLabel, OmniLabelEval
import pdb
import wandb
from multiprocessing import Pool

class LLM:
    def __init__(self, version, prompt_file = None, temp = 1.0):
        self.version = version
        self.prompt_file = prompt_file
        self.temp = temp
        with open(self.prompt_file, "r") as f:
            self.prompt = f.read()

    def __call__(self, entity):
        time.sleep(0.1)
        success = False
        fail_count = 0

        if isinstance(entity, list):
            prompt = [self.prompt.replace("PROMPT", e) for e in entity]
        else:
            if self.version == "chat":
                raw_prompt = self.prompt.replace("PROMPT", entity)
                try:
                    prompt = json.loads(raw_prompt)
                except:
                    prompt = [{"role": "user", "content": raw_prompt}]
            else:
                prompt = self.prompt.replace("PROMPT", entity)

        while not success:
            try:
                if self.version == "chat":
                    model = "gpt-3.5-turbo"
                    response = openai.ChatCompletion.create(
                        model=model,
                        messages = prompt,
                        temperature=self.temp,
                    )
                else:
                    if self.version == "curie":
                        model = "curie"
                    else:
                        model = "text-davinci-003"
                    response = openai.Completion.create(
                        model=model,
                        prompt=prompt,
                        temperature=self.temp,
                        max_tokens=128,
                        top_p=1,
                        frequency_penalty=0.0,
                        presence_penalty=0.0,
                    )
                success = True
                fail_count = 0
            except Exception as e:
                print(f"Exception: {e}")
                time.sleep(0.1)
                fail_count += 1

            if fail_count > 10:
                print("Too many failures")
                return "Too many failures"
        if isinstance(entity, list):
            if self.version == "chat":
                return [r["message"]["content"] for r in response["choices"]]
            else:
                return [r["text"] for r in response["choices"]]
        else:
            if self.version == "chat":
                return response["choices"][0]["message"]["content"]
            else:
                return response["choices"][0]["text"]


def init_distributed_mode(args):
    """Initialize distributed training, if appropriate"""
    if "RANK" in os.environ and "WORLD_SIZE" in os.environ:
        args.rank = int(os.environ["RANK"])
        args.world_size = int(os.environ["WORLD_SIZE"])
        args.gpu = int(os.environ["LOCAL_RANK"])
    elif "SLURM_PROCID" in os.environ:
        args.rank = int(os.environ["SLURM_PROCID"])
        args.gpu = args.rank % torch.cuda.device_count()
    else:
        print("Not using distributed mode")
        args.distributed = False
        return

    # args.distributed = True

    torch.cuda.set_device(args.gpu)
    args.dist_backend = "nccl"
    print("| distributed init (rank {}): {}".format(args.rank, args.dist_url), flush=True)

    dist.init_process_group(
        backend=args.dist_backend,
        init_method=args.dist_url,
        world_size=args.world_size,
        rank=args.rank,
        timeout=datetime.timedelta(0, 7200),
    )
    dist.barrier()
    setup_for_distributed(args.rank == 0)


def setup_for_distributed(is_master):
    """

    This function disables printing when not in master process

    """
    import builtins as __builtin__

    builtin_print = __builtin__.print

    def print(*args, **kwargs):
        force = kwargs.pop("force", False)
        if is_master or force:
            builtin_print(*args, **kwargs)

    __builtin__.print = print

def remove_full_stop(description_list):
    ret_list = []
    for descript in description_list:
        if descript[-1] == '.':
            descript = descript[:-1]    # remove '.'
        ret_list.append(descript)
    return ret_list

def num_of_words(text):
    return len(text.split(' '))

def create_queries_and_maps(labels, label_list, tokenizer, additional_labels=None, cfg=None, center_nouns_length = None, override_tokens_positive = None):

    # Clean label list
    label_list = [clean_name(i) for i in label_list]
    # Form the query and get the mapping
    tokens_positive = []
    start_i = 0
    end_i = 0
    objects_query = "Detect: "
    #objects_query = ""

    prefix_length = len(objects_query)
    # sep between tokens, follow training
    separation_tokens = cfg.DATASETS.SEPARATION_TOKENS

    caption_prompt = cfg.DATASETS.CAPTION_PROMPT
    use_caption_prompt = cfg.DATASETS.USE_CAPTION_PROMPT and caption_prompt is not None
    for _index, label in enumerate(label_list):
        if use_caption_prompt:
            objects_query += caption_prompt[_index]["prefix"]

        start_i = len(objects_query)

        if use_caption_prompt:
            objects_query += caption_prompt[_index]["name"]
        else:
            objects_query += label

        if "a kind of " in label:
            end_i = len(label.split(",")[0]) + start_i
        else:
            end_i = len(objects_query)
        tokens_positive.append([(start_i, end_i)])  # Every label has a [(start, end)]

        if use_caption_prompt:
            objects_query += caption_prompt[_index]["suffix"]

        if _index != len(label_list) - 1:
            objects_query += separation_tokens

    if additional_labels is not None:
        objects_query += separation_tokens
        for _index, label in enumerate(additional_labels):
            objects_query += label
            if _index != len(additional_labels) - 1:
                objects_query += separation_tokens

    # print(objects_query)

    if cfg.MODEL.LANGUAGE_BACKBONE.TOKENIZER_TYPE == "bert-base-uncased":
        tokenized = tokenizer(objects_query, return_tensors="pt")
    elif cfg.MODEL.LANGUAGE_BACKBONE.TOKENIZER_TYPE == "roberta-base":
        tokenized = tokenizer(objects_query, return_tensors="pt")
    elif cfg.MODEL.LANGUAGE_BACKBONE.TOKENIZER_TYPE == "clip":
        tokenized = tokenizer(
            objects_query, max_length=cfg.MODEL.LANGUAGE_BACKBONE.MAX_QUERY_LEN, truncation=True, return_tensors="pt"
        )
    else:
        raise NotImplementedError
    if override_tokens_positive is not None:
        new_tokens_positive = []
        for override in override_tokens_positive:
            new_tokens_positive.append((override[0] + prefix_length, override[1] + prefix_length))
        tokens_positive = [new_tokens_positive] # this is because we only have one label

    # Create the mapping between tokenized sentence and the original label
    # if one_hot:
    #     positive_map_token_to_label, positive_map_label_to_token = create_one_hot_dict(labels, no_minus_one_for_one_hot=cfg.DATASETS.NO_MINUS_ONE_FOR_ONE_HOT)
    # else:
    positive_map_token_to_label, positive_map_label_to_token = create_positive_dict(
        tokenized, tokens_positive, labels=labels
    )  # from token position to original label
    return objects_query, positive_map_label_to_token

def main():
    parser = argparse.ArgumentParser(description="PyTorch Detection to Grounding Inference")
    parser.add_argument(
        "--config-file",
        default="configs/pretrain/glip_Swin_T_O365_GoldG.yaml",
        metavar="FILE",
        help="path to config file",
    )
    parser.add_argument(
        "--weight",
        default=None,
        metavar="FILE",
        help="path to config file",
    )
    parser.add_argument("--local_rank", type=int, default=0)
    parser.add_argument(
        "opts", help="Modify config options using the command-line", default=None, nargs=argparse.REMAINDER
    )
    parser.add_argument("--world-size", default=1, type=int, help="number of distributed processes")
    parser.add_argument("--dist-url", default="env://", help="url used to set up distributed training")

    parser.add_argument("--task_config", default=None)
    parser.add_argument("--chunk_size", default=20, type=int, help="number of descriptions each time")
    parser.add_argument("--threshold", default=None, type=float, help="number of boxes stored in each run")
    parser.add_argument("--topk_per_eval", default=None, type=int, help="number of boxes stored in each run")
    parser.add_argument("--group_query", action="store_true", help="group query")
    parser.add_argument("--noun_phrase_file", default=None, type=str, help="noun phrase file")

    args = parser.parse_args()

    num_gpus = int(os.environ["WORLD_SIZE"]) if "WORLD_SIZE" in os.environ else 1
    distributed = num_gpus > 1

    if distributed:
        # torch.cuda.set_device(args.local_rank)
        # torch.distributed.init_process_group(
        #     backend="nccl", init_method="env://"
        # )
        init_distributed_mode(args)
        print("Passed distributed init")

    cfg.local_rank = args.local_rank
    cfg.num_gpus = num_gpus

    cfg.merge_from_file(args.config_file)
    cfg.merge_from_list(args.opts)
    cfg.freeze()

    log_dir = cfg.OUTPUT_DIR
    if args.weight:
        log_dir = os.path.join(log_dir, "eval", os.path.splitext(os.path.basename(args.weight))[0])
    if log_dir:
        mkdir(log_dir)

    logger = setup_logger("maskrcnn_benchmark", log_dir, get_rank())
    logger.info(args)
    logger.info("Using {} GPUs".format(num_gpus))
    logger.info(cfg)

    # logger.info("Collecting env info (might take some time)")
    # logger.info("\n" + collect_env_info())

    device = cfg.MODEL.DEVICE
    cpu_device = torch.device("cpu")

    model = build_detection_model(cfg)
    model.to(device)
    # we currently disable this
    # params, flops = get_model_complexity_info(model,
    #                                           (3, cfg.INPUT.MAX_SIZE_TEST, cfg.INPUT.MIN_SIZE_TEST),
    #                                           input_constructor=lambda x: {'images': [torch.rand(x).cuda()]})
    # print("FLOPs: {}, #Parameter: {}".format(params, flops))

    checkpointer = DetectronCheckpointer(cfg, model, save_dir=cfg.OUTPUT_DIR)
    if args.weight:
        _ = checkpointer.load(args.weight, force=True)
    else:
        _ = checkpointer.load(cfg.MODEL.WEIGHT)

    if args.weight:
        weight_iter = os.path.splitext(os.path.basename(args.weight))[0].split("_")[-1]
        try:
            weight_iter = int(weight_iter)
        except:
            weight_iter = 1
    else:
        weight_iter = 1

    # get the wandb name
    train_wandb_name = os.path.basename(cfg.OUTPUT_DIR)
    eval_wandb_name = train_wandb_name + "_eval" + "_Fixed{}_Chunk{}".format(not cfg.DATASETS.LVIS_USE_NORMAL_AP, cfg.TEST.CHUNKED_EVALUATION)
    if is_main_process() and train_wandb_name != "__test__":
        api = wandb.Api()
        runs = api.runs('haroldli/language_det_eval')
        matched_run = None
        history = []
        exclude_keys = ['_runtime', '_timestamp']
        for run in runs:
            if run.name == eval_wandb_name and str(run._state) == "finished":
                print("run found", run.name)
                print(run.summary)
                matched_run = run
                run_his = matched_run.scan_history()
                #print([len(i) for i in run_his])

                for stat in run_his:
                    stat_i = {k: v for k, v in stat.items() if k not in exclude_keys and v is not None}
                    if len(stat_i) > 1:
                        history.append(stat_i)
                #matched_run.delete()
                break # only update one
        wandb_run = wandb.init(
            project = 'language_det_eval',
            job_type = 'evaluate',
            name = eval_wandb_name,
        )
        #pprint(history)
        # exclude_keys = ['_step', '_runtime', '_timestamp']
        # for stat in history:
        #     wandb.log(
        #         {k: v for k, v in stat.items() if k not in exclude_keys},
        #         step = stat['_step'],
        #     )
    else:
        wandb_run = None
        history = None
    print("weight_iter: ", weight_iter)
    print("train_wandb_name: ", train_wandb_name)
    print("eval_wandb_name: ", eval_wandb_name)

    # build tokenizer to process data
    # tokenizer = AutoTokenizer.from_pretrained("bert-base-uncased")
    if cfg.MODEL.LANGUAGE_BACKBONE.TOKENIZER_TYPE == "bert-base-uncased":
        tokenizer = AutoTokenizer.from_pretrained("bert-base-uncased")
    elif cfg.MODEL.LANGUAGE_BACKBONE.TOKENIZER_TYPE == "roberta-base":
        tokenizer = AutoTokenizer.from_pretrained("roberta-base")
    elif cfg.MODEL.LANGUAGE_BACKBONE.TOKENIZER_TYPE == "clip":
        if cfg.MODEL.DYHEAD.FUSE_CONFIG.MLM_LOSS:
            tokenizer = CLIPTokenizerFast.from_pretrained(
                "openai/clip-vit-base-patch32", from_slow=True, mask_token="ðŁĴij</w>"
            )
        else:
            tokenizer = CLIPTokenizerFast.from_pretrained("openai/clip-vit-base-patch32", from_slow=True)
    else:
        tokenizer = None
        raise NotImplementedError

    ### inference & evaluation
    topk_per_eval = args.topk_per_eval
    threshold = args.threshold

    model.eval()

    chunk_size = args.chunk_size    # num of texts each time
    if cfg.MODEL.RPN_ARCHITECTURE == "VLDYHEAD":
        class_plus = 1
    else:
        class_plus = 0

    task_config = args.task_config
    assert task_config is not None, "task_config should be assigned"
    cfg_ = cfg.clone()
    cfg_.defrost()
    cfg_.merge_from_file(task_config)
    cfg_.merge_from_list(args.opts)

    dataset_name = cfg_.DATASETS.TEST[0]
    output_folder = os.path.join(log_dir, "inference", dataset_name)
    if not os.path.exists(output_folder):
        mkdir(output_folder)

    data_loaders_val = make_data_loader(cfg_, is_train=False, is_distributed=distributed)
    _iterator = tqdm(data_loaders_val[0])   # only for the first test set

    predictions = []

    # adhoclly
    # if "coco" in cfg_.DATASETS.TEST[0]:
    #     gt_json = 'DATASET/omnilabel/dataset_all_val_v0.1.3_coco.json'
    # elif "oi_v5" in cfg_.DATASETS.TEST[0]:
    #     gt_json = 'DATASET/omnilabel/dataset_all_val_v0.1.3_openimagesv5.json'
    # elif "oi_v6" in cfg_.DATASETS.TEST[0]:
    #     gt_json =  'DATASET/omnilabel/dataset_all_val_v0.1.3_openimagesv6.json'
    # else:
    #     assert(0)

    # omni_label = OmniLabel(path_json=gt_json)
    if args.noun_phrase_file is not None:
        try:
            noun_phrase = json.load(open(args.noun_phrase_file))
        except:
            noun_phrase = {}
            print("No noun phrase file found, will generate one")
        llm = LLM(version="chat", prompt_file="tools/data_process/prompts/noun.v1.txt", temp=0.0)
    else:
        noun_phrase = {}
    # stats
    pos_rates = []
    query_length = []

    all_info = []

    for iidx, batch in enumerate(_iterator):
        images, targets, image_ids, *_ = batch
        # import ipdb
        # ipdb.set_trace()
        images = images.to(device)
        text_queries = targets[0].get_field('inference_obj_descriptions')
        text_queries_ids = targets[0].get_field("inference_obj_description_ids")
        image_size = targets[0].size
        image_id = image_ids[0]
        # pdb.set_trace()
        #print(data_loaders_val[0].dataset.dataset_dicts[iidx])
        #all_info.append(data_loaders_val[0].dataset.dataset_dicts[iidx])
        # get the positive label if there is one
        try:
            positive_info = omni_label.get_image_sample(image_id)
            positive_instances = positive_info['instances']
            positive_labels = []
            for i in positive_instances: positive_labels.extend(i['description_ids'])
            positive_labels = list(set(positive_labels))
        except:
            positive_labels = None

        des_id_start = 0
        # rearrange the queries
        query_indexes = [i for i in range(len(text_queries_ids)) if num_of_words(text_queries[i]) > 2]
        cat_indexes = [i for i in range(len(text_queries_ids)) if num_of_words(text_queries[i]) <= 2]
        # rearrange the queries
        if args.group_query:
            text_queries_ids = [text_queries_ids[i] for i in query_indexes] + [text_queries_ids[i] for i in cat_indexes]
            text_queries = [text_queries[i] for i in query_indexes] + [text_queries[i] for i in cat_indexes]


        while des_id_start < len(text_queries_ids):
            # sinlge descriptions each time
            if args.group_query:
                if num_of_words(text_queries[des_id_start]) > 2:
                    description_list = remove_full_stop(text_queries[des_id_start:des_id_start+8])
                    description_id_list = text_queries_ids[des_id_start:des_id_start+8]
                    des_id_start += 8
                else:
                    description_list = remove_full_stop(text_queries[des_id_start:des_id_start+chunk_size])
                    description_id_list = text_queries_ids[des_id_start:des_id_start+chunk_size]
                    des_id_start += chunk_size
            else:
                if num_of_words(text_queries[des_id_start]) > 2:
                    _det_phrase = True
                    description_list = remove_full_stop([text_queries[des_id_start]])
                    description_id_list = [text_queries_ids[des_id_start]]
                    des_id_start += 1
                else:
                    _det_phrase = False
                    description_list = remove_full_stop(text_queries[des_id_start:des_id_start+chunk_size])
                    description_id_list = text_queries_ids[des_id_start:des_id_start+chunk_size]
                    des_id_start += chunk_size
            # create postive map, always use continuous labels starting from 1
            continue_labels = np.arange(0, chunk_size) + class_plus
            if _det_phrase and args.noun_phrase_file is not None:
                # try to find the centern noun phrase

                center_noun = noun_phrase.get(description_list[0], None)
                if center_noun is None:
                    center_noun = llm(description_list[0])
                    if len(center_noun) == 0:
                        center_noun = description_list[0] # failed case
                    noun_phrase[description_list[0]] = center_noun
                start = description_list[0].lower().find(center_noun.lower())
                end = start + len(center_noun)
                override_tokens_positive = [(start, end)]
                print(description_list[0], center_noun, override_tokens_positive)
                cur_queries, positive_map_label_to_token = create_queries_and_maps(continue_labels, description_list, tokenizer, cfg=cfg, override_tokens_positive=override_tokens_positive)
            else:
                cur_queries, positive_map_label_to_token = create_queries_and_maps(continue_labels, description_list, tokenizer, cfg=cfg)

            set_description_id_list = set(description_id_list)
            # intersection between positive labels and current description ids
            if positive_labels is not None:
                pos_rate = len(set_description_id_list.intersection(set(positive_labels))) / len(set_description_id_list)
                pos_rates.append(pos_rate)
                query_length.append(len(set_description_id_list))

            # print(cur_queries)
            with torch.no_grad():
                output = model(images, captions=[cur_queries], positive_map=positive_map_label_to_token)
                output = output[0].to(cpu_device).convert(mode="xywh")
                output = output.resize(image_size)  # to the oringinal scale
            # print(output)
            # import ipdb
            # ipdb.set_trace()
            # thresolding
            if threshold is not None:
                scores = output.get_field('scores')
                output = output[scores > threshold]
            # sorted by scores
            if topk_per_eval is not None:
                scores = output.get_field('scores')
                _, sortIndices = scores.sort(descending=True)
                output = output[sortIndices]
                # topk
                output = output[:topk_per_eval]

            # map continuous id to description id
            cont_ids_2_descript_ids = {i:v for i, v in enumerate(description_id_list)}
            pred_boxes = output.bbox
            pred_labels = output.get_field('labels') - class_plus   # continuous ids, starting from 0
            pred_scores = output.get_field('scores')

            # convert continuous id to description id
            for box_idx, box in enumerate(pred_boxes):
                predictions.append({
                    "image_id": image_id,
                    "bbox": box.cpu().tolist(),
                    "description_ids": [cont_ids_2_descript_ids[pred_labels[box_idx].item()]],
                    "scores": [pred_scores[box_idx].item()],
                })

        #print("pos_rate: %.2f"%(np.mean(pos_rates)), pos_rates)
        #print("query_length: %.2f"%(np.mean(query_length)), query_length)
    # draw a histogram of pos_rate
    plt.hist(pos_rates, bins=10)
    plt.savefig(os.path.join(output_folder, "pos_rate.png"))
    plt.close()
    if args.noun_phrase_file is not None:
        with open(args.noun_phrase_file, "w") as f:
            json.dump(noun_phrase, f, indent=4)

    # collect predictions from all GPUs
    synchronize()
    all_predictions = all_gather(predictions)
    all_predictions = list(itertools.chain(*all_predictions))
    if not is_main_process():
        return


    result_save_json = "%s_results.json"%(dataset_name)
    results_path = os.path.join(output_folder, result_save_json)
    print('Saving to', results_path)
    json.dump(all_predictions, open(results_path, 'w'))

    from maskrcnn_benchmark.config.paths_catalog import DatasetCatalog
    datasetMeta = DatasetCatalog.get(dataset_name)
    gt_path_json = datasetMeta['args']['ann_file']
    # import ipdb
    # ipdb.set_trace()
    # evaluation
    gt = OmniLabel(gt_path_json)              # load ground truth dataset
    dt = gt.load_res(results_path)         # load prediction results
    ole = OmniLabelEval(gt, dt)
    # ole.params.resThrs = ...                    # set evaluation parameters as desired
    ole.evaluate()
    ole.accumulate()
    score = ole.summarize()
    # OUTPUTS/GLIP_MODEL17/eval/model_0270000/inference/omnilabel_val/omnilabel_val_results.json
    #with open("tools/files/omnilabel_coco.json", "a") as f:
    #    json.dump(all_info, f)

    if is_main_process():
        if wandb_run is not None:
            #
            dataset_name = cfg.DATASETS.TEST[0]
            write_to_wandb_log(score, dataset_name, weight_iter, history)

            with open("{}/detailed.json".format(output_folder), "w") as f:
                json.dump(score, f)
            wandb_run.save("{}/detailed.json".format(output_folder))
    print(score)

def write_to_wandb_log(score, dataset_name, weight_iter, history):
    all_results = defaultdict(dict)
    exclude_keys = ['_step', '_runtime', '_timestamp']
    if history is not None:
        for stat in history:
           all_results[stat['_step']].update({k: v for k, v in stat.items() if k not in exclude_keys})

    result_dict = {}
    for score_i in score:
        if score_i["metric"]['metric'] == "AP" and score_i["metric"]['iou'] == "0.50:0.95" and score_i["metric"]['area'] == "all":
            result_dict[f"{dataset_name}_AP_{score_i['metric']['description']}"] = score_i['value']
    #wandb.log({f"{dataset_name}_mAP_all": mAP_all, f"{dataset_name}_mAP_rare": mAP_rare, f"{dataset_name}_mAP_common": mAP_common, f"{dataset_name}_mAP_frequent": mAP_frequent},  step = weight_iter)
    all_results[weight_iter].update(result_dict)

    # sort all results
    max_key = max(all_results.keys())
    for i in range(max_key + 1):
        if i in all_results:
            wandb.log(all_results[i], step = i)
        else:
            wandb.log({}, step = i)
    # for k in sorted(all_results.keys()):
    #     # need to do consecutive logging
    #     wandb.log(all_results[k], step = k)


if __name__ == "__main__":
    main()


'''

from omnilabeltools import OmniLabel, OmniLabelEval



gt = OmniLabel('DATASET/omnilabel/dataset_all_val_v0.1.3_openimagesv5.json')              # load ground truth dataset

dt = gt.load_res("OUTPUTS/GLIP_MODEL17/eval/model_0270000/inference/omnilabel_val/omnilabel_val_results.json")             # load prediction results

ole = OmniLabelEval(gt, dt)

ole.evaluate()

ole.accumulate()

ole.summarize()



gt = OmniLabel('DATASET/omnilabel/dataset_all_val_v0.1.3_coco.json')              # load ground truth dataset

dt = gt.load_res("OUTPUTS/GLIP_MODEL17/eval/model_0270000/inference/omnilabel_val/omnilabel_val_results.json")



gt = OmniLabel('DATASET/omnilabel/dataset_all_val_v0.1.3_object365.json')              # load ground truth dataset

dt = gt.load_res("OUTPUTS/GLIP_MODEL17/eval/model_0270000/inference/omnilabel_val/omnilabel_val_results.json")



'''