Spaces:
Sleeping
Sleeping
File size: 32,134 Bytes
749745d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 |
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved.
import logging
import torch
from maskrcnn_benchmark.modeling.box_coder import BoxCoder
from maskrcnn_benchmark.structures.bounding_box import BoxList, _onnx_clip_boxes_to_image
from maskrcnn_benchmark.structures.boxlist_ops import cat_boxlist
from maskrcnn_benchmark.structures.boxlist_ops import boxlist_nms
from maskrcnn_benchmark.structures.boxlist_ops import boxlist_ml_nms
from maskrcnn_benchmark.structures.boxlist_ops import remove_small_boxes
from ..utils import permute_and_flatten
import pdb
class RPNPostProcessor(torch.nn.Module):
"""
Performs post-processing on the outputs of the RPN boxes, before feeding the
proposals to the heads
"""
def __init__(
self, pre_nms_top_n, post_nms_top_n, nms_thresh, min_size, box_coder=None, fpn_post_nms_top_n=None, onnx=False
):
"""
Arguments:
pre_nms_top_n (int)
post_nms_top_n (int)
nms_thresh (float)
min_size (int)
box_coder (BoxCoder)
fpn_post_nms_top_n (int)
"""
super(RPNPostProcessor, self).__init__()
self.pre_nms_top_n = pre_nms_top_n
self.post_nms_top_n = post_nms_top_n
self.nms_thresh = nms_thresh
self.min_size = min_size
self.onnx = onnx
if box_coder is None:
box_coder = BoxCoder(weights=(1.0, 1.0, 1.0, 1.0))
self.box_coder = box_coder
if fpn_post_nms_top_n is None:
fpn_post_nms_top_n = post_nms_top_n
self.fpn_post_nms_top_n = fpn_post_nms_top_n
def add_gt_proposals(self, proposals, targets):
"""
Arguments:
proposals: list[BoxList]
targets: list[BoxList]
"""
# Get the device we're operating on
device = proposals[0].bbox.device
gt_boxes = [target.copy_with_fields([]) for target in targets]
# later cat of bbox requires all fields to be present for all bbox
# so we need to add a dummy for objectness that's missing
for gt_box in gt_boxes:
gt_box.add_field("objectness", torch.ones(len(gt_box), device=device))
proposals = [cat_boxlist((proposal, gt_box)) for proposal, gt_box in zip(proposals, gt_boxes)]
return proposals
def forward_for_single_feature_map(self, anchors, objectness, box_regression):
"""
Arguments:
anchors: list[BoxList]
objectness: tensor of size N, A, H, W
box_regression: tensor of size N, A * 4, H, W
"""
device = objectness.device
N, A, H, W = objectness.shape
# put in the same format as anchors
objectness = objectness.permute(0, 2, 3, 1).reshape(N, -1)
objectness = objectness.sigmoid()
box_regression = box_regression.view(N, -1, 4, H, W).permute(0, 3, 4, 1, 2)
box_regression = box_regression.reshape(N, -1, 4)
num_anchors = A * H * W
pre_nms_top_n = min(self.pre_nms_top_n, num_anchors)
objectness, topk_idx = objectness.topk(pre_nms_top_n, dim=1, sorted=True)
batch_idx = torch.arange(N, device=device)[:, None]
box_regression = box_regression[batch_idx, topk_idx]
image_shapes = [box.size for box in anchors]
concat_anchors = torch.cat([a.bbox for a in anchors], dim=0)
concat_anchors = concat_anchors.reshape(N, -1, 4)[batch_idx, topk_idx]
proposals = self.box_coder.decode(box_regression.view(-1, 4), concat_anchors.view(-1, 4))
proposals = proposals.view(N, -1, 4)
result = []
for proposal, score, im_shape in zip(proposals, objectness, image_shapes):
if self.onnx:
proposal = _onnx_clip_boxes_to_image(proposal, im_shape)
boxlist = BoxList(proposal, im_shape, mode="xyxy")
else:
boxlist = BoxList(proposal, im_shape, mode="xyxy")
boxlist = boxlist.clip_to_image(remove_empty=False)
boxlist.add_field("objectness", score)
boxlist = remove_small_boxes(boxlist, self.min_size)
boxlist = boxlist_nms(
boxlist,
self.nms_thresh,
max_proposals=self.post_nms_top_n,
score_field="objectness",
)
result.append(boxlist)
return result
def forward(self, anchors, objectness, box_regression, targets=None):
"""
Arguments:
anchors: list[list[BoxList]]
objectness: list[tensor]
box_regression: list[tensor]
Returns:
boxlists (list[BoxList]): the post-processed anchors, after
applying box decoding and NMS
"""
sampled_boxes = []
num_levels = len(objectness)
anchors = list(zip(*anchors))
for a, o, b in zip(anchors, objectness, box_regression):
sampled_boxes.append(self.forward_for_single_feature_map(a, o, b))
boxlists = list(zip(*sampled_boxes))
boxlists = [cat_boxlist(boxlist) for boxlist in boxlists]
if num_levels > 1:
boxlists = self.select_over_all_levels(boxlists)
# append ground-truth bboxes to proposals
if self.training and targets is not None:
boxlists = self.add_gt_proposals(boxlists, targets)
return boxlists
def select_over_all_levels(self, boxlists):
num_images = len(boxlists)
# different behavior during training and during testing:
# during training, post_nms_top_n is over *all* the proposals combined, while
# during testing, it is over the proposals for each image
# TODO resolve this difference and make it consistent. It should be per image,
# and not per batch
if self.training:
objectness = torch.cat([boxlist.get_field("objectness") for boxlist in boxlists], dim=0)
box_sizes = [len(boxlist) for boxlist in boxlists]
post_nms_top_n = min(self.fpn_post_nms_top_n, len(objectness))
_, inds_sorted = torch.topk(objectness, post_nms_top_n, dim=0, sorted=True)
inds_mask = torch.zeros_like(objectness, dtype=torch.bool)
inds_mask[inds_sorted] = 1
inds_mask = inds_mask.split(box_sizes)
for i in range(num_images):
boxlists[i] = boxlists[i][inds_mask[i]]
else:
for i in range(num_images):
objectness = boxlists[i].get_field("objectness")
post_nms_top_n = min(self.fpn_post_nms_top_n, len(objectness))
_, inds_sorted = torch.topk(objectness, post_nms_top_n, dim=0, sorted=True)
boxlists[i] = boxlists[i][inds_sorted]
return boxlists
def make_rpn_postprocessor(config, rpn_box_coder, is_train):
fpn_post_nms_top_n = config.MODEL.RPN.FPN_POST_NMS_TOP_N_TRAIN
if not is_train:
fpn_post_nms_top_n = config.MODEL.RPN.FPN_POST_NMS_TOP_N_TEST
pre_nms_top_n = config.MODEL.RPN.PRE_NMS_TOP_N_TRAIN
post_nms_top_n = config.MODEL.RPN.POST_NMS_TOP_N_TRAIN
if not is_train:
pre_nms_top_n = config.MODEL.RPN.PRE_NMS_TOP_N_TEST
post_nms_top_n = config.MODEL.RPN.POST_NMS_TOP_N_TEST
nms_thresh = config.MODEL.RPN.NMS_THRESH
min_size = config.MODEL.RPN.MIN_SIZE
onnx = config.MODEL.ONNX
box_selector = RPNPostProcessor(
pre_nms_top_n=pre_nms_top_n,
post_nms_top_n=post_nms_top_n,
nms_thresh=nms_thresh,
min_size=min_size,
box_coder=rpn_box_coder,
fpn_post_nms_top_n=fpn_post_nms_top_n,
onnx=onnx,
)
return box_selector
class RetinaPostProcessor(torch.nn.Module):
"""
Performs post-processing on the outputs of the RetinaNet boxes.
This is only used in the testing.
"""
def __init__(
self,
pre_nms_thresh,
pre_nms_top_n,
nms_thresh,
fpn_post_nms_top_n,
min_size,
num_classes,
box_coder=None,
):
"""
Arguments:
pre_nms_thresh (float)
pre_nms_top_n (int)
nms_thresh (float)
fpn_post_nms_top_n (int)
min_size (int)
num_classes (int)
box_coder (BoxCoder)
"""
super(RetinaPostProcessor, self).__init__()
self.pre_nms_thresh = pre_nms_thresh
self.pre_nms_top_n = pre_nms_top_n
self.nms_thresh = nms_thresh
self.fpn_post_nms_top_n = fpn_post_nms_top_n
self.min_size = min_size
self.num_classes = num_classes
if box_coder is None:
box_coder = BoxCoder(weights=(10.0, 10.0, 5.0, 5.0))
self.box_coder = box_coder
def forward_for_single_feature_map(self, anchors, box_cls, box_regression):
"""
Arguments:
anchors: list[BoxList]
box_cls: tensor of size N, A * C, H, W
box_regression: tensor of size N, A * 4, H, W
"""
device = box_cls.device
N, _, H, W = box_cls.shape
A = box_regression.size(1) // 4
C = box_cls.size(1) // A
# put in the same format as anchors
box_cls = permute_and_flatten(box_cls, N, A, C, H, W)
box_cls = box_cls.sigmoid()
box_regression = permute_and_flatten(box_regression, N, A, 4, H, W)
box_regression = box_regression.reshape(N, -1, 4)
num_anchors = A * H * W
candidate_inds = box_cls > self.pre_nms_thresh
pre_nms_top_n = candidate_inds.view(N, -1).sum(1)
pre_nms_top_n = pre_nms_top_n.clamp(max=self.pre_nms_top_n)
results = []
for per_box_cls, per_box_regression, per_pre_nms_top_n, per_candidate_inds, per_anchors in zip(
box_cls, box_regression, pre_nms_top_n, candidate_inds, anchors
):
# Sort and select TopN
# TODO most of this can be made out of the loop for
# all images.
# TODO:Yang: Not easy to do. Because the numbers of detections are
# different in each image. Therefore, this part needs to be done
# per image.
per_box_cls = per_box_cls[per_candidate_inds]
per_box_cls, top_k_indices = per_box_cls.topk(per_pre_nms_top_n, sorted=False)
per_candidate_nonzeros = per_candidate_inds.nonzero()[top_k_indices, :]
per_box_loc = per_candidate_nonzeros[:, 0]
per_class = per_candidate_nonzeros[:, 1]
per_class += 1
detections = self.box_coder.decode(
per_box_regression[per_box_loc, :].view(-1, 4), per_anchors.bbox[per_box_loc, :].view(-1, 4)
)
boxlist = BoxList(detections, per_anchors.size, mode="xyxy")
boxlist.add_field("labels", per_class)
boxlist.add_field("scores", per_box_cls)
boxlist = boxlist.clip_to_image(remove_empty=False)
boxlist = remove_small_boxes(boxlist, self.min_size)
results.append(boxlist)
return results
# TODO very similar to filter_results from PostProcessor
# but filter_results is per image
# TODO Yang: solve this issue in the future. No good solution
# right now.
def select_over_all_levels(self, boxlists):
num_images = len(boxlists)
results = []
for i in range(num_images):
scores = boxlists[i].get_field("scores")
labels = boxlists[i].get_field("labels")
boxes = boxlists[i].bbox
boxlist = boxlists[i]
result = []
# skip the background
for j in range(1, self.num_classes):
inds = (labels == j).nonzero().view(-1)
scores_j = scores[inds]
boxes_j = boxes[inds, :].view(-1, 4)
boxlist_for_class = BoxList(boxes_j, boxlist.size, mode="xyxy")
boxlist_for_class.add_field("scores", scores_j)
boxlist_for_class = boxlist_nms(boxlist_for_class, self.nms_thresh, score_field="scores")
num_labels = len(boxlist_for_class)
boxlist_for_class.add_field(
"labels", torch.full((num_labels,), j, dtype=torch.int64, device=scores.device)
)
result.append(boxlist_for_class)
result = cat_boxlist(result)
number_of_detections = len(result)
# Limit to max_per_image detections **over all classes**
if number_of_detections > self.fpn_post_nms_top_n > 0:
cls_scores = result.get_field("scores")
image_thresh, _ = torch.kthvalue(cls_scores.cpu(), number_of_detections - self.fpn_post_nms_top_n + 1)
keep = cls_scores >= image_thresh.item()
keep = torch.nonzero(keep).squeeze(1)
result = result[keep]
results.append(result)
return results
def forward(self, anchors, objectness, box_regression, targets=None):
"""
Arguments:
anchors: list[list[BoxList]]
objectness: list[tensor]
box_regression: list[tensor]
Returns:
boxlists (list[BoxList]): the post-processed anchors, after
applying box decoding and NMS
"""
sampled_boxes = []
anchors = list(zip(*anchors))
for a, o, b in zip(anchors, objectness, box_regression):
sampled_boxes.append(self.forward_for_single_feature_map(a, o, b))
boxlists = list(zip(*sampled_boxes))
boxlists = [cat_boxlist(boxlist) for boxlist in boxlists]
boxlists = self.select_over_all_levels(boxlists)
return boxlists
def make_retina_postprocessor(config, rpn_box_coder, is_train):
pre_nms_thresh = config.MODEL.RETINANET.INFERENCE_TH
pre_nms_top_n = config.MODEL.RETINANET.PRE_NMS_TOP_N
nms_thresh = config.MODEL.RETINANET.NMS_TH
fpn_post_nms_top_n = config.MODEL.RETINANET.DETECTIONS_PER_IMG
min_size = 0
box_selector = RetinaPostProcessor(
pre_nms_thresh=pre_nms_thresh,
pre_nms_top_n=pre_nms_top_n,
nms_thresh=nms_thresh,
fpn_post_nms_top_n=fpn_post_nms_top_n,
min_size=min_size,
num_classes=config.MODEL.RETINANET.NUM_CLASSES,
box_coder=rpn_box_coder,
)
return box_selector
class FCOSPostProcessor(torch.nn.Module):
"""
Performs post-processing on the outputs of the RetinaNet boxes.
This is only used in the testing.
"""
def __init__(
self,
pre_nms_thresh,
pre_nms_top_n,
nms_thresh,
fpn_post_nms_top_n,
min_size,
num_classes,
bbox_aug_enabled=False,
):
"""
Arguments:
pre_nms_thresh (float)
pre_nms_top_n (int)
nms_thresh (float)
fpn_post_nms_top_n (int)
min_size (int)
num_classes (int)
box_coder (BoxCoder)
"""
super(FCOSPostProcessor, self).__init__()
self.pre_nms_thresh = pre_nms_thresh
self.pre_nms_top_n = pre_nms_top_n
self.nms_thresh = nms_thresh
self.fpn_post_nms_top_n = fpn_post_nms_top_n
self.min_size = min_size
self.num_classes = num_classes
self.bbox_aug_enabled = bbox_aug_enabled
def forward_for_single_feature_map(self, locations, box_cls, box_regression, centerness, image_sizes):
"""
Arguments:
anchors: list[BoxList]
box_cls: tensor of size N, A * C, H, W
box_regression: tensor of size N, A * 4, H, W
"""
N, C, H, W = box_cls.shape
# put in the same format as locations
box_cls = box_cls.view(N, C, H, W).permute(0, 2, 3, 1)
box_cls = box_cls.reshape(N, -1, C).sigmoid()
box_regression = box_regression.view(N, 4, H, W).permute(0, 2, 3, 1)
box_regression = box_regression.reshape(N, -1, 4)
centerness = centerness.view(N, 1, H, W).permute(0, 2, 3, 1)
centerness = centerness.reshape(N, -1).sigmoid()
candidate_inds = box_cls > self.pre_nms_thresh
pre_nms_top_n = candidate_inds.reshape(N, -1).sum(1)
pre_nms_top_n = pre_nms_top_n.clamp(max=self.pre_nms_top_n)
# multiply the classification scores with centerness scores
box_cls = box_cls * centerness[:, :, None]
results = []
for i in range(N):
per_box_cls = box_cls[i]
per_candidate_inds = candidate_inds[i]
per_box_cls = per_box_cls[per_candidate_inds]
per_candidate_nonzeros = per_candidate_inds.nonzero()
per_box_loc = per_candidate_nonzeros[:, 0]
per_class = per_candidate_nonzeros[:, 1] + 1
per_box_regression = box_regression[i]
per_box_regression = per_box_regression[per_box_loc]
per_locations = locations[per_box_loc]
per_pre_nms_top_n = pre_nms_top_n[i]
if per_candidate_inds.sum().item() > per_pre_nms_top_n.item():
per_box_cls, top_k_indices = per_box_cls.topk(per_pre_nms_top_n, sorted=False)
per_class = per_class[top_k_indices]
per_box_regression = per_box_regression[top_k_indices]
per_locations = per_locations[top_k_indices]
detections = torch.stack(
[
per_locations[:, 0] - per_box_regression[:, 0],
per_locations[:, 1] - per_box_regression[:, 1],
per_locations[:, 0] + per_box_regression[:, 2],
per_locations[:, 1] + per_box_regression[:, 3],
],
dim=1,
)
h, w = image_sizes[i]
boxlist = BoxList(detections, (int(w), int(h)), mode="xyxy")
boxlist.add_field("centers", per_locations)
boxlist.add_field("labels", per_class)
boxlist.add_field("scores", torch.sqrt(per_box_cls))
boxlist = boxlist.clip_to_image(remove_empty=False)
boxlist = remove_small_boxes(boxlist, self.min_size)
results.append(boxlist)
return results
def forward(self, locations, box_cls, box_regression, centerness, image_sizes):
"""
Arguments:
anchors: list[list[BoxList]]
box_cls: list[tensor]
box_regression: list[tensor]
image_sizes: list[(h, w)]
Returns:
boxlists (list[BoxList]): the post-processed anchors, after
applying box decoding and NMS
"""
sampled_boxes = []
for _, (l, o, b, c) in enumerate(zip(locations, box_cls, box_regression, centerness)):
sampled_boxes.append(self.forward_for_single_feature_map(l, o, b, c, image_sizes))
boxlists = list(zip(*sampled_boxes))
boxlists = [cat_boxlist(boxlist) for boxlist in boxlists]
if not self.bbox_aug_enabled:
boxlists = self.select_over_all_levels(boxlists)
return boxlists
# TODO very similar to filter_results from PostProcessor
# but filter_results is per image
# TODO Yang: solve this issue in the future. No good solution
# right now.
def select_over_all_levels(self, boxlists):
num_images = len(boxlists)
results = []
for i in range(num_images):
# multiclass nms
result = boxlist_ml_nms(boxlists[i], self.nms_thresh)
number_of_detections = len(result)
# Limit to max_per_image detections **over all classes**
if number_of_detections > self.fpn_post_nms_top_n > 0:
cls_scores = result.get_field("scores")
image_thresh, _ = torch.kthvalue(cls_scores.cpu(), number_of_detections - self.fpn_post_nms_top_n + 1)
keep = cls_scores >= image_thresh.item()
keep = torch.nonzero(keep).squeeze(1)
result = result[keep]
results.append(result)
return results
def make_fcos_postprocessor(config, is_train=False):
pre_nms_thresh = config.MODEL.FCOS.INFERENCE_TH
if is_train:
pre_nms_thresh = config.MODEL.FCOS.INFERENCE_TH_TRAIN
pre_nms_top_n = config.MODEL.FCOS.PRE_NMS_TOP_N
fpn_post_nms_top_n = config.MODEL.FCOS.DETECTIONS_PER_IMG
if is_train:
pre_nms_top_n = config.MODEL.FCOS.PRE_NMS_TOP_N_TRAIN
fpn_post_nms_top_n = config.MODEL.FCOS.POST_NMS_TOP_N_TRAIN
nms_thresh = config.MODEL.FCOS.NMS_TH
box_selector = FCOSPostProcessor(
pre_nms_thresh=pre_nms_thresh,
pre_nms_top_n=pre_nms_top_n,
nms_thresh=nms_thresh,
fpn_post_nms_top_n=fpn_post_nms_top_n,
min_size=0,
num_classes=config.MODEL.FCOS.NUM_CLASSES,
)
return box_selector
class ATSSPostProcessor(torch.nn.Module):
def __init__(
self,
pre_nms_thresh,
pre_nms_top_n,
nms_thresh,
fpn_post_nms_top_n,
min_size,
num_classes,
box_coder,
bbox_aug_enabled=False,
bbox_aug_vote=False,
score_agg="MEAN",
mdetr_style_aggregate_class_num=-1,
):
super(ATSSPostProcessor, self).__init__()
self.pre_nms_thresh = pre_nms_thresh
self.pre_nms_top_n = pre_nms_top_n
self.nms_thresh = nms_thresh
self.fpn_post_nms_top_n = fpn_post_nms_top_n
self.min_size = min_size
self.num_classes = num_classes
self.bbox_aug_enabled = bbox_aug_enabled
self.box_coder = box_coder
self.bbox_aug_vote = bbox_aug_vote
self.score_agg = score_agg
self.mdetr_style_aggregate_class_num = mdetr_style_aggregate_class_num
def forward_for_single_feature_map(
self,
box_regression,
centerness,
anchors,
box_cls=None,
token_logits=None,
dot_product_logits=None,
positive_map=None,
):
N, _, H, W = box_regression.shape
A = box_regression.size(1) // 4
if box_cls is not None:
C = box_cls.size(1) // A
if token_logits is not None:
T = token_logits.size(1) // A
# put in the same format as anchors
if box_cls is not None:
# print('Classification.')
box_cls = permute_and_flatten(box_cls, N, A, C, H, W)
box_cls = box_cls.sigmoid()
# binary focal loss version
if token_logits is not None:
# print('Token.')
token_logits = permute_and_flatten(token_logits, N, A, T, H, W)
token_logits = token_logits.sigmoid()
# turn back to original classes
scores = convert_grounding_to_od_logits(
logits=token_logits, box_cls=box_cls, positive_map=positive_map, score_agg=self.score_agg
)
box_cls = scores
# binary dot product focal version
if dot_product_logits is not None:
# print('Dot Product.')
dot_product_logits = dot_product_logits.sigmoid()
if self.mdetr_style_aggregate_class_num != -1:
scores = convert_grounding_to_od_logits_v2(
logits=dot_product_logits,
num_class=self.mdetr_style_aggregate_class_num,
positive_map=positive_map,
score_agg=self.score_agg,
disable_minus_one=False,
)
else:
scores = convert_grounding_to_od_logits(
logits=dot_product_logits, box_cls=box_cls, positive_map=positive_map, score_agg=self.score_agg
)
box_cls = scores
box_regression = permute_and_flatten(box_regression, N, A, 4, H, W)
box_regression = box_regression.reshape(N, -1, 4)
candidate_inds = box_cls > self.pre_nms_thresh
pre_nms_top_n = candidate_inds.reshape(N, -1).sum(1)
pre_nms_top_n = pre_nms_top_n.clamp(max=self.pre_nms_top_n)
centerness = permute_and_flatten(centerness, N, A, 1, H, W)
centerness = centerness.reshape(N, -1).sigmoid()
# multiply the classification scores with centerness scores
box_cls = box_cls * centerness[:, :, None]
results = []
for per_box_cls, per_box_regression, per_pre_nms_top_n, per_candidate_inds, per_anchors in zip(
box_cls, box_regression, pre_nms_top_n, candidate_inds, anchors
):
per_box_cls = per_box_cls[per_candidate_inds]
per_box_cls, top_k_indices = per_box_cls.topk(per_pre_nms_top_n, sorted=False)
per_candidate_nonzeros = per_candidate_inds.nonzero()[top_k_indices, :]
per_box_loc = per_candidate_nonzeros[:, 0]
per_class = per_candidate_nonzeros[:, 1] + 1
# print(per_class)
detections = self.box_coder.decode(
per_box_regression[per_box_loc, :].view(-1, 4), per_anchors.bbox[per_box_loc, :].view(-1, 4)
)
boxlist = BoxList(detections, per_anchors.size, mode="xyxy")
boxlist.add_field("labels", per_class)
boxlist.add_field("scores", torch.sqrt(per_box_cls))
boxlist = boxlist.clip_to_image(remove_empty=False)
boxlist = remove_small_boxes(boxlist, self.min_size)
results.append(boxlist)
return results
def forward(
self,
box_regression,
centerness,
anchors,
box_cls=None,
token_logits=None,
dot_product_logits=None,
positive_map=None,
):
sampled_boxes = []
anchors = list(zip(*anchors))
for idx, (b, c, a) in enumerate(zip(box_regression, centerness, anchors)):
o = None
t = None
d = None
if box_cls is not None:
o = box_cls[idx]
if token_logits is not None:
t = token_logits[idx]
if dot_product_logits is not None:
d = dot_product_logits[idx]
sampled_boxes.append(self.forward_for_single_feature_map(b, c, a, o, t, d, positive_map))
boxlists = list(zip(*sampled_boxes))
boxlists = [cat_boxlist(boxlist) for boxlist in boxlists]
if not (self.bbox_aug_enabled and not self.bbox_aug_vote):
boxlists = self.select_over_all_levels(boxlists)
return boxlists
# TODO very similar to filter_results from PostProcessor
# but filter_results is per image
# TODO Yang: solve this issue in the future. No good solution
# right now.
def select_over_all_levels(self, boxlists):
num_images = len(boxlists)
results = []
for i in range(num_images):
# multiclass nms
result = boxlist_ml_nms(boxlists[i], self.nms_thresh)
number_of_detections = len(result)
# Limit to max_per_image detections **over all classes**
if number_of_detections > self.fpn_post_nms_top_n > 0:
cls_scores = result.get_field("scores")
image_thresh, _ = torch.kthvalue(
# cls_scores.cpu(),
cls_scores.cpu().float(),
number_of_detections - self.fpn_post_nms_top_n + 1,
)
keep = cls_scores >= image_thresh.item()
keep = torch.nonzero(keep).squeeze(1)
result = result[keep]
results.append(result)
return results
def convert_grounding_to_od_logits(logits, box_cls, positive_map, score_agg=None):
scores = torch.zeros(logits.shape[0], logits.shape[1], box_cls.shape[2]).to(logits.device)
# 256 -> 80, average for each class
if positive_map is not None:
# score aggregation method
if score_agg == "MEAN":
for label_j in positive_map:
scores[:, :, label_j - 1] = logits[:, :, torch.LongTensor(positive_map[label_j])].mean(-1)
elif score_agg == "MAX":
# torch.max() returns (values, indices)
for label_j in positive_map:
scores[:, :, label_j - 1] = logits[:, :, torch.LongTensor(positive_map[label_j])].max(-1)[0]
elif score_agg == "ONEHOT":
# one hot
scores = logits[:, :, : len(positive_map)]
else:
raise NotImplementedError
return scores
def convert_grounding_to_od_logits_v2(logits, num_class, positive_map, score_agg=None, disable_minus_one=True):
scores = torch.zeros(logits.shape[0], logits.shape[1], num_class).to(logits.device)
# 256 -> 80, average for each class
if positive_map is not None:
# score aggregation method
if score_agg == "MEAN":
for label_j in positive_map:
locations_label_j = positive_map[label_j]
if isinstance(locations_label_j, int):
locations_label_j = [locations_label_j]
scores[:, :, label_j if disable_minus_one else label_j - 1] = logits[
:, :, torch.LongTensor(locations_label_j)
].mean(-1)
elif score_agg == "POWER":
for label_j in positive_map:
locations_label_j = positive_map[label_j]
if isinstance(locations_label_j, int):
locations_label_j = [locations_label_j]
probability = torch.prod(logits[:, :, torch.LongTensor(locations_label_j)], dim=-1).squeeze(-1)
probability = torch.pow(probability, 1 / len(locations_label_j))
scores[:, :, label_j if disable_minus_one else label_j - 1] = probability
elif score_agg == "MAX":
# torch.max() returns (values, indices)
for label_j in positive_map:
scores[:, :, label_j if disable_minus_one else label_j - 1] = logits[
:, :, torch.LongTensor(positive_map[label_j])
].max(-1)[0]
elif score_agg == "ONEHOT":
# one hot
scores = logits[:, :, : len(positive_map)]
else:
raise NotImplementedError
return scores
def make_atss_postprocessor(config, box_coder, is_train=False):
pre_nms_thresh = config.MODEL.ATSS.INFERENCE_TH
if is_train:
pre_nms_thresh = config.MODEL.ATSS.INFERENCE_TH_TRAIN
pre_nms_top_n = config.MODEL.ATSS.PRE_NMS_TOP_N
fpn_post_nms_top_n = config.MODEL.ATSS.DETECTIONS_PER_IMG
if is_train:
pre_nms_top_n = config.MODEL.ATSS.PRE_NMS_TOP_N_TRAIN
fpn_post_nms_top_n = config.MODEL.ATSS.POST_NMS_TOP_N_TRAIN
nms_thresh = config.MODEL.ATSS.NMS_TH
score_agg = config.MODEL.DYHEAD.SCORE_AGG
box_selector = ATSSPostProcessor(
pre_nms_thresh=pre_nms_thresh,
pre_nms_top_n=pre_nms_top_n,
nms_thresh=nms_thresh,
fpn_post_nms_top_n=fpn_post_nms_top_n,
min_size=0,
num_classes=config.MODEL.ATSS.NUM_CLASSES,
box_coder=box_coder,
bbox_aug_enabled=config.TEST.USE_MULTISCALE,
score_agg=score_agg,
mdetr_style_aggregate_class_num=config.TEST.MDETR_STYLE_AGGREGATE_CLASS_NUM,
)
return box_selector
|