File size: 32,134 Bytes
749745d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved.
import logging

import torch

from maskrcnn_benchmark.modeling.box_coder import BoxCoder
from maskrcnn_benchmark.structures.bounding_box import BoxList, _onnx_clip_boxes_to_image
from maskrcnn_benchmark.structures.boxlist_ops import cat_boxlist
from maskrcnn_benchmark.structures.boxlist_ops import boxlist_nms
from maskrcnn_benchmark.structures.boxlist_ops import boxlist_ml_nms
from maskrcnn_benchmark.structures.boxlist_ops import remove_small_boxes

from ..utils import permute_and_flatten
import pdb


class RPNPostProcessor(torch.nn.Module):
    """

    Performs post-processing on the outputs of the RPN boxes, before feeding the

    proposals to the heads

    """

    def __init__(

        self, pre_nms_top_n, post_nms_top_n, nms_thresh, min_size, box_coder=None, fpn_post_nms_top_n=None, onnx=False

    ):
        """

        Arguments:

            pre_nms_top_n (int)

            post_nms_top_n (int)

            nms_thresh (float)

            min_size (int)

            box_coder (BoxCoder)

            fpn_post_nms_top_n (int)

        """
        super(RPNPostProcessor, self).__init__()
        self.pre_nms_top_n = pre_nms_top_n
        self.post_nms_top_n = post_nms_top_n
        self.nms_thresh = nms_thresh
        self.min_size = min_size
        self.onnx = onnx

        if box_coder is None:
            box_coder = BoxCoder(weights=(1.0, 1.0, 1.0, 1.0))
        self.box_coder = box_coder

        if fpn_post_nms_top_n is None:
            fpn_post_nms_top_n = post_nms_top_n
        self.fpn_post_nms_top_n = fpn_post_nms_top_n

    def add_gt_proposals(self, proposals, targets):
        """

        Arguments:

            proposals: list[BoxList]

            targets: list[BoxList]

        """
        # Get the device we're operating on
        device = proposals[0].bbox.device

        gt_boxes = [target.copy_with_fields([]) for target in targets]

        # later cat of bbox requires all fields to be present for all bbox
        # so we need to add a dummy for objectness that's missing
        for gt_box in gt_boxes:
            gt_box.add_field("objectness", torch.ones(len(gt_box), device=device))

        proposals = [cat_boxlist((proposal, gt_box)) for proposal, gt_box in zip(proposals, gt_boxes)]

        return proposals

    def forward_for_single_feature_map(self, anchors, objectness, box_regression):
        """

        Arguments:

            anchors: list[BoxList]

            objectness: tensor of size N, A, H, W

            box_regression: tensor of size N, A * 4, H, W

        """
        device = objectness.device
        N, A, H, W = objectness.shape

        # put in the same format as anchors
        objectness = objectness.permute(0, 2, 3, 1).reshape(N, -1)
        objectness = objectness.sigmoid()
        box_regression = box_regression.view(N, -1, 4, H, W).permute(0, 3, 4, 1, 2)
        box_regression = box_regression.reshape(N, -1, 4)

        num_anchors = A * H * W

        pre_nms_top_n = min(self.pre_nms_top_n, num_anchors)
        objectness, topk_idx = objectness.topk(pre_nms_top_n, dim=1, sorted=True)

        batch_idx = torch.arange(N, device=device)[:, None]
        box_regression = box_regression[batch_idx, topk_idx]

        image_shapes = [box.size for box in anchors]
        concat_anchors = torch.cat([a.bbox for a in anchors], dim=0)
        concat_anchors = concat_anchors.reshape(N, -1, 4)[batch_idx, topk_idx]

        proposals = self.box_coder.decode(box_regression.view(-1, 4), concat_anchors.view(-1, 4))

        proposals = proposals.view(N, -1, 4)

        result = []
        for proposal, score, im_shape in zip(proposals, objectness, image_shapes):
            if self.onnx:
                proposal = _onnx_clip_boxes_to_image(proposal, im_shape)
                boxlist = BoxList(proposal, im_shape, mode="xyxy")
            else:
                boxlist = BoxList(proposal, im_shape, mode="xyxy")
                boxlist = boxlist.clip_to_image(remove_empty=False)

            boxlist.add_field("objectness", score)
            boxlist = remove_small_boxes(boxlist, self.min_size)
            boxlist = boxlist_nms(
                boxlist,
                self.nms_thresh,
                max_proposals=self.post_nms_top_n,
                score_field="objectness",
            )
            result.append(boxlist)
        return result

    def forward(self, anchors, objectness, box_regression, targets=None):
        """

        Arguments:

            anchors: list[list[BoxList]]

            objectness: list[tensor]

            box_regression: list[tensor]



        Returns:

            boxlists (list[BoxList]): the post-processed anchors, after

                applying box decoding and NMS

        """
        sampled_boxes = []
        num_levels = len(objectness)
        anchors = list(zip(*anchors))
        for a, o, b in zip(anchors, objectness, box_regression):
            sampled_boxes.append(self.forward_for_single_feature_map(a, o, b))

        boxlists = list(zip(*sampled_boxes))
        boxlists = [cat_boxlist(boxlist) for boxlist in boxlists]

        if num_levels > 1:
            boxlists = self.select_over_all_levels(boxlists)

        # append ground-truth bboxes to proposals
        if self.training and targets is not None:
            boxlists = self.add_gt_proposals(boxlists, targets)

        return boxlists

    def select_over_all_levels(self, boxlists):
        num_images = len(boxlists)
        # different behavior during training and during testing:
        # during training, post_nms_top_n is over *all* the proposals combined, while
        # during testing, it is over the proposals for each image
        # TODO resolve this difference and make it consistent. It should be per image,
        # and not per batch
        if self.training:
            objectness = torch.cat([boxlist.get_field("objectness") for boxlist in boxlists], dim=0)
            box_sizes = [len(boxlist) for boxlist in boxlists]
            post_nms_top_n = min(self.fpn_post_nms_top_n, len(objectness))
            _, inds_sorted = torch.topk(objectness, post_nms_top_n, dim=0, sorted=True)
            inds_mask = torch.zeros_like(objectness, dtype=torch.bool)
            inds_mask[inds_sorted] = 1
            inds_mask = inds_mask.split(box_sizes)
            for i in range(num_images):
                boxlists[i] = boxlists[i][inds_mask[i]]
        else:
            for i in range(num_images):
                objectness = boxlists[i].get_field("objectness")
                post_nms_top_n = min(self.fpn_post_nms_top_n, len(objectness))
                _, inds_sorted = torch.topk(objectness, post_nms_top_n, dim=0, sorted=True)
                boxlists[i] = boxlists[i][inds_sorted]
        return boxlists


def make_rpn_postprocessor(config, rpn_box_coder, is_train):
    fpn_post_nms_top_n = config.MODEL.RPN.FPN_POST_NMS_TOP_N_TRAIN
    if not is_train:
        fpn_post_nms_top_n = config.MODEL.RPN.FPN_POST_NMS_TOP_N_TEST

    pre_nms_top_n = config.MODEL.RPN.PRE_NMS_TOP_N_TRAIN
    post_nms_top_n = config.MODEL.RPN.POST_NMS_TOP_N_TRAIN
    if not is_train:
        pre_nms_top_n = config.MODEL.RPN.PRE_NMS_TOP_N_TEST
        post_nms_top_n = config.MODEL.RPN.POST_NMS_TOP_N_TEST
    nms_thresh = config.MODEL.RPN.NMS_THRESH
    min_size = config.MODEL.RPN.MIN_SIZE
    onnx = config.MODEL.ONNX
    box_selector = RPNPostProcessor(
        pre_nms_top_n=pre_nms_top_n,
        post_nms_top_n=post_nms_top_n,
        nms_thresh=nms_thresh,
        min_size=min_size,
        box_coder=rpn_box_coder,
        fpn_post_nms_top_n=fpn_post_nms_top_n,
        onnx=onnx,
    )
    return box_selector


class RetinaPostProcessor(torch.nn.Module):
    """

    Performs post-processing on the outputs of the RetinaNet boxes.

    This is only used in the testing.

    """

    def __init__(

        self,

        pre_nms_thresh,

        pre_nms_top_n,

        nms_thresh,

        fpn_post_nms_top_n,

        min_size,

        num_classes,

        box_coder=None,

    ):
        """

        Arguments:

            pre_nms_thresh (float)

            pre_nms_top_n (int)

            nms_thresh (float)

            fpn_post_nms_top_n (int)

            min_size (int)

            num_classes (int)

            box_coder (BoxCoder)

        """
        super(RetinaPostProcessor, self).__init__()
        self.pre_nms_thresh = pre_nms_thresh
        self.pre_nms_top_n = pre_nms_top_n
        self.nms_thresh = nms_thresh
        self.fpn_post_nms_top_n = fpn_post_nms_top_n
        self.min_size = min_size
        self.num_classes = num_classes

        if box_coder is None:
            box_coder = BoxCoder(weights=(10.0, 10.0, 5.0, 5.0))
        self.box_coder = box_coder

    def forward_for_single_feature_map(self, anchors, box_cls, box_regression):
        """

        Arguments:

            anchors: list[BoxList]

            box_cls: tensor of size N, A * C, H, W

            box_regression: tensor of size N, A * 4, H, W

        """
        device = box_cls.device
        N, _, H, W = box_cls.shape
        A = box_regression.size(1) // 4
        C = box_cls.size(1) // A

        # put in the same format as anchors
        box_cls = permute_and_flatten(box_cls, N, A, C, H, W)
        box_cls = box_cls.sigmoid()

        box_regression = permute_and_flatten(box_regression, N, A, 4, H, W)
        box_regression = box_regression.reshape(N, -1, 4)

        num_anchors = A * H * W

        candidate_inds = box_cls > self.pre_nms_thresh

        pre_nms_top_n = candidate_inds.view(N, -1).sum(1)
        pre_nms_top_n = pre_nms_top_n.clamp(max=self.pre_nms_top_n)

        results = []
        for per_box_cls, per_box_regression, per_pre_nms_top_n, per_candidate_inds, per_anchors in zip(
            box_cls, box_regression, pre_nms_top_n, candidate_inds, anchors
        ):
            # Sort and select TopN
            # TODO most of this can be made out of the loop for
            # all images.
            # TODO:Yang: Not easy to do. Because the numbers of detections are
            # different in each image. Therefore, this part needs to be done
            # per image.
            per_box_cls = per_box_cls[per_candidate_inds]

            per_box_cls, top_k_indices = per_box_cls.topk(per_pre_nms_top_n, sorted=False)

            per_candidate_nonzeros = per_candidate_inds.nonzero()[top_k_indices, :]

            per_box_loc = per_candidate_nonzeros[:, 0]
            per_class = per_candidate_nonzeros[:, 1]
            per_class += 1

            detections = self.box_coder.decode(
                per_box_regression[per_box_loc, :].view(-1, 4), per_anchors.bbox[per_box_loc, :].view(-1, 4)
            )

            boxlist = BoxList(detections, per_anchors.size, mode="xyxy")
            boxlist.add_field("labels", per_class)
            boxlist.add_field("scores", per_box_cls)
            boxlist = boxlist.clip_to_image(remove_empty=False)
            boxlist = remove_small_boxes(boxlist, self.min_size)
            results.append(boxlist)

        return results

    # TODO very similar to filter_results from PostProcessor
    # but filter_results is per image
    # TODO Yang: solve this issue in the future. No good solution
    # right now.
    def select_over_all_levels(self, boxlists):
        num_images = len(boxlists)
        results = []
        for i in range(num_images):
            scores = boxlists[i].get_field("scores")
            labels = boxlists[i].get_field("labels")
            boxes = boxlists[i].bbox
            boxlist = boxlists[i]
            result = []
            # skip the background
            for j in range(1, self.num_classes):
                inds = (labels == j).nonzero().view(-1)

                scores_j = scores[inds]
                boxes_j = boxes[inds, :].view(-1, 4)
                boxlist_for_class = BoxList(boxes_j, boxlist.size, mode="xyxy")
                boxlist_for_class.add_field("scores", scores_j)
                boxlist_for_class = boxlist_nms(boxlist_for_class, self.nms_thresh, score_field="scores")
                num_labels = len(boxlist_for_class)
                boxlist_for_class.add_field(
                    "labels", torch.full((num_labels,), j, dtype=torch.int64, device=scores.device)
                )
                result.append(boxlist_for_class)

            result = cat_boxlist(result)
            number_of_detections = len(result)

            # Limit to max_per_image detections **over all classes**
            if number_of_detections > self.fpn_post_nms_top_n > 0:
                cls_scores = result.get_field("scores")
                image_thresh, _ = torch.kthvalue(cls_scores.cpu(), number_of_detections - self.fpn_post_nms_top_n + 1)
                keep = cls_scores >= image_thresh.item()
                keep = torch.nonzero(keep).squeeze(1)
                result = result[keep]
            results.append(result)
        return results

    def forward(self, anchors, objectness, box_regression, targets=None):
        """

        Arguments:

            anchors: list[list[BoxList]]

            objectness: list[tensor]

            box_regression: list[tensor]



        Returns:

            boxlists (list[BoxList]): the post-processed anchors, after

                applying box decoding and NMS

        """
        sampled_boxes = []
        anchors = list(zip(*anchors))
        for a, o, b in zip(anchors, objectness, box_regression):
            sampled_boxes.append(self.forward_for_single_feature_map(a, o, b))

        boxlists = list(zip(*sampled_boxes))
        boxlists = [cat_boxlist(boxlist) for boxlist in boxlists]

        boxlists = self.select_over_all_levels(boxlists)

        return boxlists


def make_retina_postprocessor(config, rpn_box_coder, is_train):
    pre_nms_thresh = config.MODEL.RETINANET.INFERENCE_TH
    pre_nms_top_n = config.MODEL.RETINANET.PRE_NMS_TOP_N
    nms_thresh = config.MODEL.RETINANET.NMS_TH
    fpn_post_nms_top_n = config.MODEL.RETINANET.DETECTIONS_PER_IMG
    min_size = 0

    box_selector = RetinaPostProcessor(
        pre_nms_thresh=pre_nms_thresh,
        pre_nms_top_n=pre_nms_top_n,
        nms_thresh=nms_thresh,
        fpn_post_nms_top_n=fpn_post_nms_top_n,
        min_size=min_size,
        num_classes=config.MODEL.RETINANET.NUM_CLASSES,
        box_coder=rpn_box_coder,
    )

    return box_selector


class FCOSPostProcessor(torch.nn.Module):
    """

    Performs post-processing on the outputs of the RetinaNet boxes.

    This is only used in the testing.

    """

    def __init__(

        self,

        pre_nms_thresh,

        pre_nms_top_n,

        nms_thresh,

        fpn_post_nms_top_n,

        min_size,

        num_classes,

        bbox_aug_enabled=False,

    ):
        """

        Arguments:

            pre_nms_thresh (float)

            pre_nms_top_n (int)

            nms_thresh (float)

            fpn_post_nms_top_n (int)

            min_size (int)

            num_classes (int)

            box_coder (BoxCoder)

        """
        super(FCOSPostProcessor, self).__init__()
        self.pre_nms_thresh = pre_nms_thresh
        self.pre_nms_top_n = pre_nms_top_n
        self.nms_thresh = nms_thresh
        self.fpn_post_nms_top_n = fpn_post_nms_top_n
        self.min_size = min_size
        self.num_classes = num_classes
        self.bbox_aug_enabled = bbox_aug_enabled

    def forward_for_single_feature_map(self, locations, box_cls, box_regression, centerness, image_sizes):
        """

        Arguments:

            anchors: list[BoxList]

            box_cls: tensor of size N, A * C, H, W

            box_regression: tensor of size N, A * 4, H, W

        """
        N, C, H, W = box_cls.shape

        # put in the same format as locations
        box_cls = box_cls.view(N, C, H, W).permute(0, 2, 3, 1)
        box_cls = box_cls.reshape(N, -1, C).sigmoid()
        box_regression = box_regression.view(N, 4, H, W).permute(0, 2, 3, 1)
        box_regression = box_regression.reshape(N, -1, 4)
        centerness = centerness.view(N, 1, H, W).permute(0, 2, 3, 1)
        centerness = centerness.reshape(N, -1).sigmoid()

        candidate_inds = box_cls > self.pre_nms_thresh
        pre_nms_top_n = candidate_inds.reshape(N, -1).sum(1)
        pre_nms_top_n = pre_nms_top_n.clamp(max=self.pre_nms_top_n)

        # multiply the classification scores with centerness scores
        box_cls = box_cls * centerness[:, :, None]

        results = []
        for i in range(N):
            per_box_cls = box_cls[i]
            per_candidate_inds = candidate_inds[i]
            per_box_cls = per_box_cls[per_candidate_inds]

            per_candidate_nonzeros = per_candidate_inds.nonzero()
            per_box_loc = per_candidate_nonzeros[:, 0]
            per_class = per_candidate_nonzeros[:, 1] + 1

            per_box_regression = box_regression[i]
            per_box_regression = per_box_regression[per_box_loc]
            per_locations = locations[per_box_loc]

            per_pre_nms_top_n = pre_nms_top_n[i]

            if per_candidate_inds.sum().item() > per_pre_nms_top_n.item():
                per_box_cls, top_k_indices = per_box_cls.topk(per_pre_nms_top_n, sorted=False)
                per_class = per_class[top_k_indices]
                per_box_regression = per_box_regression[top_k_indices]
                per_locations = per_locations[top_k_indices]

            detections = torch.stack(
                [
                    per_locations[:, 0] - per_box_regression[:, 0],
                    per_locations[:, 1] - per_box_regression[:, 1],
                    per_locations[:, 0] + per_box_regression[:, 2],
                    per_locations[:, 1] + per_box_regression[:, 3],
                ],
                dim=1,
            )

            h, w = image_sizes[i]
            boxlist = BoxList(detections, (int(w), int(h)), mode="xyxy")
            boxlist.add_field("centers", per_locations)
            boxlist.add_field("labels", per_class)
            boxlist.add_field("scores", torch.sqrt(per_box_cls))
            boxlist = boxlist.clip_to_image(remove_empty=False)
            boxlist = remove_small_boxes(boxlist, self.min_size)
            results.append(boxlist)

        return results

    def forward(self, locations, box_cls, box_regression, centerness, image_sizes):
        """

        Arguments:

            anchors: list[list[BoxList]]

            box_cls: list[tensor]

            box_regression: list[tensor]

            image_sizes: list[(h, w)]

        Returns:

            boxlists (list[BoxList]): the post-processed anchors, after

                applying box decoding and NMS

        """
        sampled_boxes = []
        for _, (l, o, b, c) in enumerate(zip(locations, box_cls, box_regression, centerness)):
            sampled_boxes.append(self.forward_for_single_feature_map(l, o, b, c, image_sizes))

        boxlists = list(zip(*sampled_boxes))
        boxlists = [cat_boxlist(boxlist) for boxlist in boxlists]
        if not self.bbox_aug_enabled:
            boxlists = self.select_over_all_levels(boxlists)

        return boxlists

    # TODO very similar to filter_results from PostProcessor
    # but filter_results is per image
    # TODO Yang: solve this issue in the future. No good solution
    # right now.
    def select_over_all_levels(self, boxlists):
        num_images = len(boxlists)
        results = []
        for i in range(num_images):
            # multiclass nms
            result = boxlist_ml_nms(boxlists[i], self.nms_thresh)
            number_of_detections = len(result)

            # Limit to max_per_image detections **over all classes**
            if number_of_detections > self.fpn_post_nms_top_n > 0:
                cls_scores = result.get_field("scores")
                image_thresh, _ = torch.kthvalue(cls_scores.cpu(), number_of_detections - self.fpn_post_nms_top_n + 1)
                keep = cls_scores >= image_thresh.item()
                keep = torch.nonzero(keep).squeeze(1)
                result = result[keep]
            results.append(result)
        return results


def make_fcos_postprocessor(config, is_train=False):
    pre_nms_thresh = config.MODEL.FCOS.INFERENCE_TH
    if is_train:
        pre_nms_thresh = config.MODEL.FCOS.INFERENCE_TH_TRAIN
    pre_nms_top_n = config.MODEL.FCOS.PRE_NMS_TOP_N
    fpn_post_nms_top_n = config.MODEL.FCOS.DETECTIONS_PER_IMG
    if is_train:
        pre_nms_top_n = config.MODEL.FCOS.PRE_NMS_TOP_N_TRAIN
        fpn_post_nms_top_n = config.MODEL.FCOS.POST_NMS_TOP_N_TRAIN
    nms_thresh = config.MODEL.FCOS.NMS_TH

    box_selector = FCOSPostProcessor(
        pre_nms_thresh=pre_nms_thresh,
        pre_nms_top_n=pre_nms_top_n,
        nms_thresh=nms_thresh,
        fpn_post_nms_top_n=fpn_post_nms_top_n,
        min_size=0,
        num_classes=config.MODEL.FCOS.NUM_CLASSES,
    )

    return box_selector


class ATSSPostProcessor(torch.nn.Module):
    def __init__(

        self,

        pre_nms_thresh,

        pre_nms_top_n,

        nms_thresh,

        fpn_post_nms_top_n,

        min_size,

        num_classes,

        box_coder,

        bbox_aug_enabled=False,

        bbox_aug_vote=False,

        score_agg="MEAN",

        mdetr_style_aggregate_class_num=-1,

    ):
        super(ATSSPostProcessor, self).__init__()
        self.pre_nms_thresh = pre_nms_thresh
        self.pre_nms_top_n = pre_nms_top_n
        self.nms_thresh = nms_thresh
        self.fpn_post_nms_top_n = fpn_post_nms_top_n
        self.min_size = min_size
        self.num_classes = num_classes
        self.bbox_aug_enabled = bbox_aug_enabled
        self.box_coder = box_coder
        self.bbox_aug_vote = bbox_aug_vote
        self.score_agg = score_agg
        self.mdetr_style_aggregate_class_num = mdetr_style_aggregate_class_num

    def forward_for_single_feature_map(

        self,

        box_regression,

        centerness,

        anchors,

        box_cls=None,

        token_logits=None,

        dot_product_logits=None,

        positive_map=None,

    ):

        N, _, H, W = box_regression.shape

        A = box_regression.size(1) // 4

        if box_cls is not None:
            C = box_cls.size(1) // A

        if token_logits is not None:
            T = token_logits.size(1) // A

        # put in the same format as anchors
        if box_cls is not None:
            # print('Classification.')
            box_cls = permute_and_flatten(box_cls, N, A, C, H, W)
            box_cls = box_cls.sigmoid()

        # binary focal loss version
        if token_logits is not None:
            # print('Token.')
            token_logits = permute_and_flatten(token_logits, N, A, T, H, W)
            token_logits = token_logits.sigmoid()
            # turn back to original classes
            scores = convert_grounding_to_od_logits(
                logits=token_logits, box_cls=box_cls, positive_map=positive_map, score_agg=self.score_agg
            )
            box_cls = scores

        # binary dot product focal version
        if dot_product_logits is not None:
            # print('Dot Product.')
            dot_product_logits = dot_product_logits.sigmoid()
            if self.mdetr_style_aggregate_class_num != -1:
                scores = convert_grounding_to_od_logits_v2(
                    logits=dot_product_logits,
                    num_class=self.mdetr_style_aggregate_class_num,
                    positive_map=positive_map,
                    score_agg=self.score_agg,
                    disable_minus_one=False,
                )
            else:
                scores = convert_grounding_to_od_logits(
                    logits=dot_product_logits, box_cls=box_cls, positive_map=positive_map, score_agg=self.score_agg
                )
            box_cls = scores

        box_regression = permute_and_flatten(box_regression, N, A, 4, H, W)
        box_regression = box_regression.reshape(N, -1, 4)

        candidate_inds = box_cls > self.pre_nms_thresh
        pre_nms_top_n = candidate_inds.reshape(N, -1).sum(1)
        pre_nms_top_n = pre_nms_top_n.clamp(max=self.pre_nms_top_n)

        centerness = permute_and_flatten(centerness, N, A, 1, H, W)
        centerness = centerness.reshape(N, -1).sigmoid()

        # multiply the classification scores with centerness scores

        box_cls = box_cls * centerness[:, :, None]

        results = []

        for per_box_cls, per_box_regression, per_pre_nms_top_n, per_candidate_inds, per_anchors in zip(
            box_cls, box_regression, pre_nms_top_n, candidate_inds, anchors
        ):
            per_box_cls = per_box_cls[per_candidate_inds]

            per_box_cls, top_k_indices = per_box_cls.topk(per_pre_nms_top_n, sorted=False)

            per_candidate_nonzeros = per_candidate_inds.nonzero()[top_k_indices, :]

            per_box_loc = per_candidate_nonzeros[:, 0]
            per_class = per_candidate_nonzeros[:, 1] + 1

            # print(per_class)

            detections = self.box_coder.decode(
                per_box_regression[per_box_loc, :].view(-1, 4), per_anchors.bbox[per_box_loc, :].view(-1, 4)
            )

            boxlist = BoxList(detections, per_anchors.size, mode="xyxy")
            boxlist.add_field("labels", per_class)
            boxlist.add_field("scores", torch.sqrt(per_box_cls))
            boxlist = boxlist.clip_to_image(remove_empty=False)
            boxlist = remove_small_boxes(boxlist, self.min_size)
            results.append(boxlist)

        return results

    def forward(

        self,

        box_regression,

        centerness,

        anchors,

        box_cls=None,

        token_logits=None,

        dot_product_logits=None,

        positive_map=None,

    ):
        sampled_boxes = []
        anchors = list(zip(*anchors))
        for idx, (b, c, a) in enumerate(zip(box_regression, centerness, anchors)):
            o = None
            t = None
            d = None
            if box_cls is not None:
                o = box_cls[idx]
            if token_logits is not None:
                t = token_logits[idx]
            if dot_product_logits is not None:
                d = dot_product_logits[idx]

            sampled_boxes.append(self.forward_for_single_feature_map(b, c, a, o, t, d, positive_map))

        boxlists = list(zip(*sampled_boxes))
        boxlists = [cat_boxlist(boxlist) for boxlist in boxlists]
        if not (self.bbox_aug_enabled and not self.bbox_aug_vote):
            boxlists = self.select_over_all_levels(boxlists)

        return boxlists

    # TODO very similar to filter_results from PostProcessor
    # but filter_results is per image
    # TODO Yang: solve this issue in the future. No good solution
    # right now.
    def select_over_all_levels(self, boxlists):
        num_images = len(boxlists)
        results = []
        for i in range(num_images):
            # multiclass nms
            result = boxlist_ml_nms(boxlists[i], self.nms_thresh)
            number_of_detections = len(result)

            # Limit to max_per_image detections **over all classes**
            if number_of_detections > self.fpn_post_nms_top_n > 0:
                cls_scores = result.get_field("scores")
                image_thresh, _ = torch.kthvalue(
                    # cls_scores.cpu(),
                    cls_scores.cpu().float(),
                    number_of_detections - self.fpn_post_nms_top_n + 1,
                )
                keep = cls_scores >= image_thresh.item()
                keep = torch.nonzero(keep).squeeze(1)
                result = result[keep]
            results.append(result)
        return results


def convert_grounding_to_od_logits(logits, box_cls, positive_map, score_agg=None):
    scores = torch.zeros(logits.shape[0], logits.shape[1], box_cls.shape[2]).to(logits.device)
    # 256 -> 80, average for each class
    if positive_map is not None:
        # score aggregation method
        if score_agg == "MEAN":
            for label_j in positive_map:
                scores[:, :, label_j - 1] = logits[:, :, torch.LongTensor(positive_map[label_j])].mean(-1)
        elif score_agg == "MAX":
            # torch.max() returns (values, indices)
            for label_j in positive_map:
                scores[:, :, label_j - 1] = logits[:, :, torch.LongTensor(positive_map[label_j])].max(-1)[0]
        elif score_agg == "ONEHOT":
            # one hot
            scores = logits[:, :, : len(positive_map)]
        else:
            raise NotImplementedError
    return scores


def convert_grounding_to_od_logits_v2(logits, num_class, positive_map, score_agg=None, disable_minus_one=True):

    scores = torch.zeros(logits.shape[0], logits.shape[1], num_class).to(logits.device)
    # 256 -> 80, average for each class
    if positive_map is not None:
        # score aggregation method
        if score_agg == "MEAN":
            for label_j in positive_map:
                locations_label_j = positive_map[label_j]
                if isinstance(locations_label_j, int):
                    locations_label_j = [locations_label_j]
                scores[:, :, label_j if disable_minus_one else label_j - 1] = logits[
                    :, :, torch.LongTensor(locations_label_j)
                ].mean(-1)
        elif score_agg == "POWER":
            for label_j in positive_map:
                locations_label_j = positive_map[label_j]
                if isinstance(locations_label_j, int):
                    locations_label_j = [locations_label_j]

                probability = torch.prod(logits[:, :, torch.LongTensor(locations_label_j)], dim=-1).squeeze(-1)
                probability = torch.pow(probability, 1 / len(locations_label_j))
                scores[:, :, label_j if disable_minus_one else label_j - 1] = probability
        elif score_agg == "MAX":
            # torch.max() returns (values, indices)
            for label_j in positive_map:
                scores[:, :, label_j if disable_minus_one else label_j - 1] = logits[
                    :, :, torch.LongTensor(positive_map[label_j])
                ].max(-1)[0]
        elif score_agg == "ONEHOT":
            # one hot
            scores = logits[:, :, : len(positive_map)]
        else:
            raise NotImplementedError
    return scores


def make_atss_postprocessor(config, box_coder, is_train=False):
    pre_nms_thresh = config.MODEL.ATSS.INFERENCE_TH
    if is_train:
        pre_nms_thresh = config.MODEL.ATSS.INFERENCE_TH_TRAIN
    pre_nms_top_n = config.MODEL.ATSS.PRE_NMS_TOP_N
    fpn_post_nms_top_n = config.MODEL.ATSS.DETECTIONS_PER_IMG
    if is_train:
        pre_nms_top_n = config.MODEL.ATSS.PRE_NMS_TOP_N_TRAIN
        fpn_post_nms_top_n = config.MODEL.ATSS.POST_NMS_TOP_N_TRAIN
    nms_thresh = config.MODEL.ATSS.NMS_TH
    score_agg = config.MODEL.DYHEAD.SCORE_AGG

    box_selector = ATSSPostProcessor(
        pre_nms_thresh=pre_nms_thresh,
        pre_nms_top_n=pre_nms_top_n,
        nms_thresh=nms_thresh,
        fpn_post_nms_top_n=fpn_post_nms_top_n,
        min_size=0,
        num_classes=config.MODEL.ATSS.NUM_CLASSES,
        box_coder=box_coder,
        bbox_aug_enabled=config.TEST.USE_MULTISCALE,
        score_agg=score_agg,
        mdetr_style_aggregate_class_num=config.TEST.MDETR_STYLE_AGGREGATE_CLASS_NUM,
    )

    return box_selector