File size: 5,158 Bytes
749745d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
// Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved.
#include <ATen/ATen.h>
#include <ATen/cuda/CUDAContext.h>

#include <THC/THC.h>
#include <THC/THCDeviceUtils.cuh>

#include <vector>
#include <iostream>

int const threadsPerBlock = sizeof(unsigned long long) * 8;

__device__ inline float devIoU(float const * const a, float const * const b) {
  if (a[5] != b[5]) {
    return 0.0;
  }
  float left = max(a[0], b[0]), right = min(a[2], b[2]);
  float top = max(a[1], b[1]), bottom = min(a[3], b[3]);
  float width = max(right - left + 1, 0.f), height = max(bottom - top + 1, 0.f);
  float interS = width * height;
  float Sa = (a[2] - a[0] + 1) * (a[3] - a[1] + 1);
  float Sb = (b[2] - b[0] + 1) * (b[3] - b[1] + 1);
  return interS / (Sa + Sb - interS);
}

__global__ void ml_nms_kernel(const int n_boxes, const float nms_overlap_thresh,

                           const float *dev_boxes, unsigned long long *dev_mask) {
  const int row_start = blockIdx.y;
  const int col_start = blockIdx.x;

  // if (row_start > col_start) return;

  const int row_size =
        min(n_boxes - row_start * threadsPerBlock, threadsPerBlock);
  const int col_size =
        min(n_boxes - col_start * threadsPerBlock, threadsPerBlock);

  __shared__ float block_boxes[threadsPerBlock * 6];
  if (threadIdx.x < col_size) {
    block_boxes[threadIdx.x * 6 + 0] =
        dev_boxes[(threadsPerBlock * col_start + threadIdx.x) * 6 + 0];
    block_boxes[threadIdx.x * 6 + 1] =
        dev_boxes[(threadsPerBlock * col_start + threadIdx.x) * 6 + 1];
    block_boxes[threadIdx.x * 6 + 2] =
        dev_boxes[(threadsPerBlock * col_start + threadIdx.x) * 6 + 2];
    block_boxes[threadIdx.x * 6 + 3] =
        dev_boxes[(threadsPerBlock * col_start + threadIdx.x) * 6 + 3];
    block_boxes[threadIdx.x * 6 + 4] =
        dev_boxes[(threadsPerBlock * col_start + threadIdx.x) * 6 + 4];
    block_boxes[threadIdx.x * 6 + 5] =
        dev_boxes[(threadsPerBlock * col_start + threadIdx.x) * 6 + 5];
  }
  __syncthreads();

  if (threadIdx.x < row_size) {
    const int cur_box_idx = threadsPerBlock * row_start + threadIdx.x;
    const float *cur_box = dev_boxes + cur_box_idx * 6;
    int i = 0;
    unsigned long long t = 0;
    int start = 0;
    if (row_start == col_start) {
      start = threadIdx.x + 1;
    }
    for (i = start; i < col_size; i++) {
      if (devIoU(cur_box, block_boxes + i * 6) > nms_overlap_thresh) {
        t |= 1ULL << i;
      }
    }
    const int col_blocks = THCCeilDiv(n_boxes, threadsPerBlock);
    dev_mask[cur_box_idx * col_blocks + col_start] = t;
  }
}

// boxes is a N x 6 tensor
at::Tensor ml_nms_cuda(const at::Tensor boxes, float nms_overlap_thresh) {
  using scalar_t = float;
  AT_ASSERTM(boxes.device().is_cuda(), "boxes must be a CUDA tensor");
  auto scores = boxes.select(1, 4);
  auto order_t = std::get<1>(scores.sort(0, /* descending=*/true));
  auto boxes_sorted = boxes.index_select(0, order_t);

  int boxes_num = boxes.size(0);

  const int col_blocks = THCCeilDiv(boxes_num, threadsPerBlock);

  scalar_t* boxes_dev = boxes_sorted.data_ptr<scalar_t>();

  THCState *state = at::globalContext().lazyInitCUDA(); // TODO replace with getTHCState

  unsigned long long* mask_dev = NULL;
  //THCudaCheck(THCudaMalloc(state, (void**) &mask_dev,
  //                      boxes_num * col_blocks * sizeof(unsigned long long)));

  mask_dev = (unsigned long long*) THCudaMalloc(state, boxes_num * col_blocks * sizeof(unsigned long long));

  dim3 blocks(THCCeilDiv(boxes_num, threadsPerBlock),

              THCCeilDiv(boxes_num, threadsPerBlock));
  dim3 threads(threadsPerBlock);
  ml_nms_kernel<<<blocks, threads>>>(boxes_num,
                                  nms_overlap_thresh,
                                  boxes_dev,
                                  mask_dev);

  std::vector<unsigned long long> mask_host(boxes_num * col_blocks);
  THCudaCheck(cudaMemcpy(&mask_host[0],
                        mask_dev,
                        sizeof(unsigned long long) * boxes_num * col_blocks,
                        cudaMemcpyDeviceToHost));

  std::vector<unsigned long long> remv(col_blocks);
  memset(&remv[0], 0, sizeof(unsigned long long) * col_blocks);

  at::Tensor keep = at::empty({boxes_num}, boxes.options().dtype(at::kLong).device(at::kCPU));
  int64_t* keep_out = keep.data_ptr<int64_t>();

  int num_to_keep = 0;
  for (int i = 0; i < boxes_num; i++) {
    int nblock = i / threadsPerBlock;
    int inblock = i % threadsPerBlock;

    if (!(remv[nblock] & (1ULL << inblock))) {
      keep_out[num_to_keep++] = i;
      unsigned long long *p = &mask_host[0] + i * col_blocks;
      for (int j = nblock; j < col_blocks; j++) {
        remv[j] |= p[j];
      }
    }
  }

  THCudaFree(state, mask_dev);
  // TODO improve this part
  return std::get<0>(order_t.index({
                       keep.narrow(/*dim=*/0, /*start=*/0, /*length=*/num_to_keep).to(
                         order_t.device(), keep.scalar_type())
                     }).sort(0, false));
}