File size: 2,575 Bytes
749745d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
// Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved.
#include "cpu/vision.h"


template <typename scalar_t>
at::Tensor nms_cpu_kernel(const at::Tensor& dets,

                          const at::Tensor& scores,

                          const float threshold) {
  AT_ASSERTM(!dets.device().is_cuda(), "dets must be a CPU tensor");
  AT_ASSERTM(!scores.device().is_cuda(), "scores must be a CPU tensor");
  AT_ASSERTM(dets.type() == scores.type(), "dets should have the same type as scores");

  if (dets.numel() == 0) {
    return at::empty({0}, dets.options().dtype(at::kLong).device(at::kCPU));
  }

  auto x1_t = dets.select(1, 0).contiguous();
  auto y1_t = dets.select(1, 1).contiguous();
  auto x2_t = dets.select(1, 2).contiguous();
  auto y2_t = dets.select(1, 3).contiguous();

  at::Tensor areas_t = (x2_t - x1_t + 1) * (y2_t - y1_t + 1);

  auto order_t = std::get<1>(scores.sort(0, /* descending=*/true));

  auto ndets = dets.size(0);
  at::Tensor suppressed_t = at::zeros({ndets}, dets.options().dtype(at::kByte).device(at::kCPU));

  auto suppressed = suppressed_t.data_ptr<uint8_t>();
  auto order = order_t.data_ptr<int64_t>();
  auto x1 = x1_t.data_ptr<scalar_t>();
  auto y1 = y1_t.data_ptr<scalar_t>();
  auto x2 = x2_t.data_ptr<scalar_t>();
  auto y2 = y2_t.data_ptr<scalar_t>();
  auto areas = areas_t.data_ptr<scalar_t>();

  for (int64_t _i = 0; _i < ndets; _i++) {
    auto i = order[_i];
    if (suppressed[i] == 1)
      continue;
    auto ix1 = x1[i];
    auto iy1 = y1[i];
    auto ix2 = x2[i];
    auto iy2 = y2[i];
    auto iarea = areas[i];

    for (int64_t _j = _i + 1; _j < ndets; _j++) {
      auto j = order[_j];
      if (suppressed[j] == 1)
        continue;
      auto xx1 = std::max(ix1, x1[j]);
      auto yy1 = std::max(iy1, y1[j]);
      auto xx2 = std::min(ix2, x2[j]);
      auto yy2 = std::min(iy2, y2[j]);

      auto w = std::max(static_cast<scalar_t>(0), xx2 - xx1 + 1);
      auto h = std::max(static_cast<scalar_t>(0), yy2 - yy1 + 1);
      auto inter = w * h;
      auto ovr = inter / (iarea + areas[j] - inter);
      if (ovr >= threshold)
        suppressed[j] = 1;
   }
  }
  return at::nonzero(suppressed_t == 0).squeeze(1);
}

at::Tensor nms_cpu(const at::Tensor& dets,

               const at::Tensor& scores,

               const float threshold) {
  at::Tensor result;
  AT_DISPATCH_FLOATING_TYPES(dets.scalar_type(), "nms", [&] {
    result = nms_cpu_kernel<scalar_t>(dets, scores, threshold);
  });
  return result;
}