Spaces:
Sleeping
Sleeping
File size: 3,165 Bytes
749745d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 |
MODEL:
META_ARCHITECTURE: "GeneralizedVLRCNN"
WEIGHT: "MODEL/swin_tiny_patch4_window7_224.pth"
RPN_ONLY: True
RPN_ARCHITECTURE: "VLDYHEAD"
BACKBONE:
CONV_BODY: "SWINT-FPN-RETINANET"
OUT_CHANNELS: 256
LANGUAGE_BACKBONE:
FREEZE: False
MODEL_TYPE: "bert-base-uncased" # "roberta-base", "clip"
MASK_SPECIAL: False
RPN:
USE_FPN: True
ANCHOR_SIZES: (64, 128, 256, 512, 1024)
ANCHOR_STRIDE: (8, 16, 32, 64, 128)
ASPECT_RATIOS: (1.0,)
SCALES_PER_OCTAVE: 1
DYHEAD:
CHANNELS: 256
NUM_CONVS: 6
USE_GN: True
USE_DYRELU: True
USE_DFCONV: True
USE_DYFUSE: True
TOPK: 9 # topk for selecting candidate positive samples from each level
SCORE_AGG: "MEAN"
LOG_SCALE: 0.0
FUSE_CONFIG:
EARLY_FUSE_ON: True
TYPE: "MHA-B" # "MHA-B", "MHA-S", "FILM", "SCAN", "NONE"
USE_CLASSIFICATION_LOSS: False
USE_TOKEN_LOSS: False
USE_CONTRASTIVE_ALIGN_LOSS: False
CONTRASTIVE_HIDDEN_DIM: 64
USE_DOT_PRODUCT_TOKEN_LOSS: True
USE_FUSED_FEATURES_DOT_PRODUCT: True
USE_LAYER_SCALE: True
CLAMP_MIN_FOR_UNDERFLOW: True
CLAMP_MAX_FOR_OVERFLOW: True
CLAMP_BERTATTN_MIN_FOR_UNDERFLOW: True
CLAMP_BERTATTN_MAX_FOR_OVERFLOW: True
CLAMP_DOT_PRODUCT: True
# use for grounding model
DATASETS:
REGISTER:
bing_caption_train:
yaml_path: "GCC/CC3M/yamls"
yaml_name: "tiny.noun.harsh"
yaml_name_no_coco: "tiny.noun.harsh"
# PREDOWNLOAD_BING : True
# PREDOWNLOAD_WITH_AZCOPY : True
CAPTION_CONF: 0.4
CAPTION_AUGMENTATION_VERSION: "v3.v1"
CAPTION_VOCAB_FILE: "tools/files/mixed_vocab.v1.tmp0.davincci.chunk1of1.filtered.json"
DESCRIPTION_FILE: "tools/files/o365.description.v1.json"
TRAIN: ("mixed_train_no_coco", "flickr30k_train", "object365_dt_train", "bing_caption_train_no_coco")
# TRAIN: ("bing_caption_train", "mixed_train", "flickr30k_train", "coco_grounding_train", )
TEST: ("coco_2017_val", )
BING_INDEX_LIST: [ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11]
# BING_INDEX_LIST: [ 0, 1, ]
ONE_HOT: False
FLICKR_COPY: 2
MIXED_COPY: 2
OBJECT365_COPY: 2
DISABLE_SHUFFLE: False
ADD_DET_PROMPT: False
RANDOM_SAMPLE_NEG: 85
CONTROL_PROB: (0.05, 0.05, 0.5, 0.2)
FURTHER_SCREEN: True
CAPTION_NMS: -1.0
CAPTION_MIN_BOX: 1
SEPARATION_TOKENS: ". "
PACK_RANDOM_CAPTION_NUMBER: 20
NO_RANDOM_PACK_PROBABILITY: 0.4
RANDOM_PACK_PROB: 0.5
CAPTION_FORMAT_VERSION: "v2"
INPUT:
PIXEL_MEAN: [ 103.530, 116.280, 123.675 ]
PIXEL_STD: [ 57.375, 57.120, 58.395 ]
MIN_SIZE_TRAIN: 800
MAX_SIZE_TRAIN: 1333
MIN_SIZE_TEST: 800
MAX_SIZE_TEST: 1333
AUGMENT:
MULT_MIN_SIZE_TRAIN: (480,560,640,720,800)
DATALOADER:
SIZE_DIVISIBILITY: 32
DISTRIBUTE_CHUNK_AMONG_NODE: False
SOLVER:
OPTIMIZER: ADAMW
BASE_LR: 0.0001
LANG_LR: 0.00001
WEIGHT_DECAY: 0.0001
STEPS: (0.67, 0.89)
#MAX_EPOCH: 12
MAX_ITER: 235026
IMS_PER_BATCH: 64
WARMUP_ITERS: 2000
WARMUP_FACTOR: 0.001
USE_AMP: True
MODEL_EMA: 0.999
FIND_UNUSED_PARAMETERS: False
CLIP_GRADIENTS:
ENABLED: True
CLIP_TYPE: "full_model"
CLIP_VALUE: 1.0
NORM_TYPE: 2.0 |