File size: 7,644 Bytes
749745d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
from collections import OrderedDict
import logging
import os

import torch
from torch import nn
import torch.nn.functional as F
import torch.utils.checkpoint as checkpoint
from maskrcnn_benchmark.config import try_to_find

from timm.models.layers import DropPath, trunc_normal_

logger = logging.getLogger(__name__)


class LayerNorm(nn.Module):
    def __init__(self, hidden_size, eps=1e-12):
        """Construct a layernorm module in the TF style (epsilon inside the square root)."""
        super(LayerNorm, self).__init__()
        self.weight = nn.Parameter(torch.ones(hidden_size))
        self.bias = nn.Parameter(torch.zeros(hidden_size))
        self.variance_epsilon = eps

    def forward(self, x):
        pdtype = x.dtype
        x = x.float()
        u = x.mean(-1, keepdim=True)
        s = (x - u).pow(2).mean(-1, keepdim=True)
        x = (x - u) / torch.sqrt(s + self.variance_epsilon)
        return self.weight * x.to(pdtype) + self.bias


class QuickGELU(nn.Module):
    def forward(self, x: torch.Tensor):
        return x * torch.sigmoid(1.702 * x)


class ResidualAttentionBlock(nn.Module):
    def __init__(self, d_model: int, n_head: int, attn_mask: torch.Tensor = None, drop_path: float = 0.0):
        super().__init__()

        self.attn = nn.MultiheadAttention(d_model, n_head)
        self.ln_1 = LayerNorm(d_model)
        self.mlp = nn.Sequential(
            OrderedDict(
                [
                    ("c_fc", nn.Linear(d_model, d_model * 4)),
                    ("gelu", QuickGELU()),
                    ("c_proj", nn.Linear(d_model * 4, d_model)),
                ]
            )
        )
        self.ln_2 = LayerNorm(d_model)
        self.attn_mask = attn_mask
        self.drop_path = DropPath(drop_path) if drop_path > 0.0 else nn.Identity()

    def attention(self, x: torch.Tensor, key_padding_mask: torch.Tensor = None):
        self.attn_mask = self.attn_mask.to(dtype=x.dtype, device=x.device) if self.attn_mask is not None else None
        return self.attn(x, x, x, need_weights=False, attn_mask=self.attn_mask, key_padding_mask=key_padding_mask)[0]

    def forward(self, x: torch.Tensor, key_padding_mask: torch.Tensor = None):
        x = x + self.drop_path(self.attention(self.ln_1(x), key_padding_mask=key_padding_mask))
        x = x + self.drop_path(self.mlp(self.ln_2(x)))
        return x


class CLIPTransformer(nn.Module):
    def __init__(self, cfg):
        super().__init__()

        self.cfg = cfg
        self.use_checkpoint = cfg.MODEL.LANGUAGE_BACKBONE.USE_CHECKPOINT
        print("LANGUAGE BACKBONE USE GRADIENT CHECKPOINTING: ", self.cfg.MODEL.LANGUAGE_BACKBONE.USE_CHECKPOINT)

        self.context_length = self.cfg.MODEL.CLIP.CONTEXT_LENGTH
        self.width = self.cfg.MODEL.CLIP.WIDTH
        self.layers = self.cfg.MODEL.CLIP.LAYERS
        self.heads = self.cfg.MODEL.CLIP.HEADS
        self.drop_path = self.cfg.MODEL.CLIP.DROP_PATH
        self.vocab_size = self.cfg.MODEL.CLIP.VOCAB_SIZE

        self.token_embedding = nn.Embedding(self.vocab_size, self.width)

        self.positional_embedding = nn.Parameter(torch.empty(self.context_length, self.width))

        # attn_mask = self.build_attention_mask()
        attn_mask = None

        dpr = [x.item() for x in torch.linspace(0, self.drop_path, self.layers)]  # stochastic depth decay rule
        self.resblocks = nn.ModuleList(
            [ResidualAttentionBlock(self.width, self.heads, attn_mask, dpr[i]) for i in range(self.layers)]
        )

        self.ln_final = LayerNorm(self.width)

        trunc_normal_(self.positional_embedding, std=0.02)
        # nn.init.normal_(self.token_embedding, std=.02)
        trunc_normal_(self.token_embedding.weight, std=0.02)
        self.apply(self._init_weights)

        # loading pre-trained weight from our CLIP models
        if len(self.cfg.MODEL.LANGUAGE_BACKBONE.WEIGHT) > 0:
            self.init_weights(pretrained=try_to_find(self.cfg.MODEL.LANGUAGE_BACKBONE.WEIGHT), pretrained_layers=["*"])

    def build_attention_mask(self):
        # lazily create causal attention mask, with full attention between the vision tokens
        # pytorch uses additive attention mask; fill with -inf
        mask = torch.empty(self.context_length, self.context_length)
        mask.fill_(float("-inf"))
        mask.triu_(1)  # zero out the lower diagonal
        return mask

    def _init_weights(self, m):
        if isinstance(m, (nn.Linear, nn.Conv2d)):
            trunc_normal_(m.weight, std=0.02)
            if m.bias is not None:
                nn.init.constant_(m.bias, 0)
        elif isinstance(m, (nn.LayerNorm, nn.BatchNorm2d)):
            nn.init.constant_(m.bias, 0)

    def resize_pos_embed_1d(self, posemb, shape_new):
        # rescale the grid of position embeddings when loading from state_dict
        ntok_old = posemb.shape[0]
        if ntok_old > 1:
            ntok_new = shape_new[0]
            posemb_grid = posemb.unsqueeze(dim=0).permute(0, 2, 1).unsqueeze(dim=-1)
            posemb_grid = F.interpolate(posemb_grid, size=[ntok_new, 1], mode="bilinear")
            posemb_grid = posemb_grid.squeeze(dim=-1).permute(0, 2, 1).squeeze(dim=0)
            posemb = posemb_grid
        return posemb

    def init_weights(self, pretrained="", pretrained_layers=[], verbose=False):
        if os.path.isfile(pretrained):
            pretrained_dict = torch.load(pretrained, map_location="cpu")
            logger.info(f"=> loading pretrained clip text model {pretrained}")
            model_dict = self.state_dict()

            need_init_state_dict = {}
            for k, v in pretrained_dict.items():
                need_init = k.split(".")[0] in pretrained_layers or pretrained_layers[0] is "*"
                if need_init:
                    if k.startswith("text.") and k[5:] in model_dict.keys():
                        need_init_state_dict[k[5:]] = v

            # notice the context length now changes from 77 to 256, so we need to resize the positional embedding
            if "positional_embedding" in need_init_state_dict.keys():
                old_pos_embed = need_init_state_dict["positional_embedding"].float()
                new_pos_embed = self.resize_pos_embed_1d(
                    old_pos_embed, (self.cfg.MODEL.CLIP.CONTEXT_LENGTH, old_pos_embed.shape[1])
                )
                need_init_state_dict["positional_embedding"] = new_pos_embed
            self.load_state_dict(need_init_state_dict, strict=True)

    @torch.jit.ignore
    def no_weight_decay(self):
        return {
            "positional_embedding",
            "token_embedding",
        }

    def forward(self, text):
        input = text["input_ids"]
        mask = text["attention_mask"]
        # get extended attention mask for nn.MultiHeadAttention
        key_padding_mask = (1.0 - mask).to(torch.bool)

        x = self.token_embedding(input)  # [batch_size, n_ctx, d_model]
        x = x + self.positional_embedding
        x = x.permute(1, 0, 2)  # NLD -> LND

        for resblock in self.resblocks:
            if self.use_checkpoint:
                x = checkpoint.checkpoint(resblock, x, key_padding_mask)
            else:
                x = resblock(x, key_padding_mask)

        x = x.permute(1, 0, 2)  # LND -> NLD

        x = self.ln_final(x)

        # x = x[torch.arange(x.shape[0]), text.argmax(dim=-1)]

        ret = {"aggregate": x, "embedded": x, "masks": mask, "hidden": x}

        return ret