Spaces:
Sleeping
Sleeping
File size: 7,644 Bytes
749745d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 |
from collections import OrderedDict
import logging
import os
import torch
from torch import nn
import torch.nn.functional as F
import torch.utils.checkpoint as checkpoint
from maskrcnn_benchmark.config import try_to_find
from timm.models.layers import DropPath, trunc_normal_
logger = logging.getLogger(__name__)
class LayerNorm(nn.Module):
def __init__(self, hidden_size, eps=1e-12):
"""Construct a layernorm module in the TF style (epsilon inside the square root)."""
super(LayerNorm, self).__init__()
self.weight = nn.Parameter(torch.ones(hidden_size))
self.bias = nn.Parameter(torch.zeros(hidden_size))
self.variance_epsilon = eps
def forward(self, x):
pdtype = x.dtype
x = x.float()
u = x.mean(-1, keepdim=True)
s = (x - u).pow(2).mean(-1, keepdim=True)
x = (x - u) / torch.sqrt(s + self.variance_epsilon)
return self.weight * x.to(pdtype) + self.bias
class QuickGELU(nn.Module):
def forward(self, x: torch.Tensor):
return x * torch.sigmoid(1.702 * x)
class ResidualAttentionBlock(nn.Module):
def __init__(self, d_model: int, n_head: int, attn_mask: torch.Tensor = None, drop_path: float = 0.0):
super().__init__()
self.attn = nn.MultiheadAttention(d_model, n_head)
self.ln_1 = LayerNorm(d_model)
self.mlp = nn.Sequential(
OrderedDict(
[
("c_fc", nn.Linear(d_model, d_model * 4)),
("gelu", QuickGELU()),
("c_proj", nn.Linear(d_model * 4, d_model)),
]
)
)
self.ln_2 = LayerNorm(d_model)
self.attn_mask = attn_mask
self.drop_path = DropPath(drop_path) if drop_path > 0.0 else nn.Identity()
def attention(self, x: torch.Tensor, key_padding_mask: torch.Tensor = None):
self.attn_mask = self.attn_mask.to(dtype=x.dtype, device=x.device) if self.attn_mask is not None else None
return self.attn(x, x, x, need_weights=False, attn_mask=self.attn_mask, key_padding_mask=key_padding_mask)[0]
def forward(self, x: torch.Tensor, key_padding_mask: torch.Tensor = None):
x = x + self.drop_path(self.attention(self.ln_1(x), key_padding_mask=key_padding_mask))
x = x + self.drop_path(self.mlp(self.ln_2(x)))
return x
class CLIPTransformer(nn.Module):
def __init__(self, cfg):
super().__init__()
self.cfg = cfg
self.use_checkpoint = cfg.MODEL.LANGUAGE_BACKBONE.USE_CHECKPOINT
print("LANGUAGE BACKBONE USE GRADIENT CHECKPOINTING: ", self.cfg.MODEL.LANGUAGE_BACKBONE.USE_CHECKPOINT)
self.context_length = self.cfg.MODEL.CLIP.CONTEXT_LENGTH
self.width = self.cfg.MODEL.CLIP.WIDTH
self.layers = self.cfg.MODEL.CLIP.LAYERS
self.heads = self.cfg.MODEL.CLIP.HEADS
self.drop_path = self.cfg.MODEL.CLIP.DROP_PATH
self.vocab_size = self.cfg.MODEL.CLIP.VOCAB_SIZE
self.token_embedding = nn.Embedding(self.vocab_size, self.width)
self.positional_embedding = nn.Parameter(torch.empty(self.context_length, self.width))
# attn_mask = self.build_attention_mask()
attn_mask = None
dpr = [x.item() for x in torch.linspace(0, self.drop_path, self.layers)] # stochastic depth decay rule
self.resblocks = nn.ModuleList(
[ResidualAttentionBlock(self.width, self.heads, attn_mask, dpr[i]) for i in range(self.layers)]
)
self.ln_final = LayerNorm(self.width)
trunc_normal_(self.positional_embedding, std=0.02)
# nn.init.normal_(self.token_embedding, std=.02)
trunc_normal_(self.token_embedding.weight, std=0.02)
self.apply(self._init_weights)
# loading pre-trained weight from our CLIP models
if len(self.cfg.MODEL.LANGUAGE_BACKBONE.WEIGHT) > 0:
self.init_weights(pretrained=try_to_find(self.cfg.MODEL.LANGUAGE_BACKBONE.WEIGHT), pretrained_layers=["*"])
def build_attention_mask(self):
# lazily create causal attention mask, with full attention between the vision tokens
# pytorch uses additive attention mask; fill with -inf
mask = torch.empty(self.context_length, self.context_length)
mask.fill_(float("-inf"))
mask.triu_(1) # zero out the lower diagonal
return mask
def _init_weights(self, m):
if isinstance(m, (nn.Linear, nn.Conv2d)):
trunc_normal_(m.weight, std=0.02)
if m.bias is not None:
nn.init.constant_(m.bias, 0)
elif isinstance(m, (nn.LayerNorm, nn.BatchNorm2d)):
nn.init.constant_(m.bias, 0)
def resize_pos_embed_1d(self, posemb, shape_new):
# rescale the grid of position embeddings when loading from state_dict
ntok_old = posemb.shape[0]
if ntok_old > 1:
ntok_new = shape_new[0]
posemb_grid = posemb.unsqueeze(dim=0).permute(0, 2, 1).unsqueeze(dim=-1)
posemb_grid = F.interpolate(posemb_grid, size=[ntok_new, 1], mode="bilinear")
posemb_grid = posemb_grid.squeeze(dim=-1).permute(0, 2, 1).squeeze(dim=0)
posemb = posemb_grid
return posemb
def init_weights(self, pretrained="", pretrained_layers=[], verbose=False):
if os.path.isfile(pretrained):
pretrained_dict = torch.load(pretrained, map_location="cpu")
logger.info(f"=> loading pretrained clip text model {pretrained}")
model_dict = self.state_dict()
need_init_state_dict = {}
for k, v in pretrained_dict.items():
need_init = k.split(".")[0] in pretrained_layers or pretrained_layers[0] is "*"
if need_init:
if k.startswith("text.") and k[5:] in model_dict.keys():
need_init_state_dict[k[5:]] = v
# notice the context length now changes from 77 to 256, so we need to resize the positional embedding
if "positional_embedding" in need_init_state_dict.keys():
old_pos_embed = need_init_state_dict["positional_embedding"].float()
new_pos_embed = self.resize_pos_embed_1d(
old_pos_embed, (self.cfg.MODEL.CLIP.CONTEXT_LENGTH, old_pos_embed.shape[1])
)
need_init_state_dict["positional_embedding"] = new_pos_embed
self.load_state_dict(need_init_state_dict, strict=True)
@torch.jit.ignore
def no_weight_decay(self):
return {
"positional_embedding",
"token_embedding",
}
def forward(self, text):
input = text["input_ids"]
mask = text["attention_mask"]
# get extended attention mask for nn.MultiHeadAttention
key_padding_mask = (1.0 - mask).to(torch.bool)
x = self.token_embedding(input) # [batch_size, n_ctx, d_model]
x = x + self.positional_embedding
x = x.permute(1, 0, 2) # NLD -> LND
for resblock in self.resblocks:
if self.use_checkpoint:
x = checkpoint.checkpoint(resblock, x, key_padding_mask)
else:
x = resblock(x, key_padding_mask)
x = x.permute(1, 0, 2) # LND -> NLD
x = self.ln_final(x)
# x = x[torch.arange(x.shape[0]), text.argmax(dim=-1)]
ret = {"aggregate": x, "embedded": x, "masks": mask, "hidden": x}
return ret
|