File size: 4,212 Bytes
749745d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
import os

import torch
import torch.utils.data
from PIL import Image
import sys

if sys.version_info[0] == 2:
    import xml.etree.cElementTree as ET
else:
    import xml.etree.ElementTree as ET


from maskrcnn_benchmark.structures.bounding_box import BoxList


class PascalVOCDataset(torch.utils.data.Dataset):

    CLASSES = (
        "__background__ ",
        "aeroplane",
        "bicycle",
        "bird",
        "boat",
        "bottle",
        "bus",
        "car",
        "cat",
        "chair",
        "cow",
        "diningtable",
        "dog",
        "horse",
        "motorbike",
        "person",
        "pottedplant",
        "sheep",
        "sofa",
        "train",
        "tvmonitor",
    )

    def __init__(self, data_dir, split, use_difficult=False, transforms=None):
        self.root = data_dir
        self.image_set = split
        self.keep_difficult = use_difficult
        self.transforms = transforms

        self._annopath = os.path.join(self.root, "Annotations", "%s.xml")
        self._imgpath = os.path.join(self.root, "JPEGImages", "%s.jpg")
        self._imgsetpath = os.path.join(self.root, "ImageSets", "Main", "%s.txt")

        with open(self._imgsetpath % self.image_set) as f:
            self.ids = f.readlines()
        self.ids = [x.strip("\n") for x in self.ids]
        self.id_to_img_map = {k: v for k, v in enumerate(self.ids)}

        cls = PascalVOCDataset.CLASSES
        self.class_to_ind = dict(zip(cls, range(len(cls))))

    def __getitem__(self, index):
        img_id = self.ids[index]
        img = Image.open(self._imgpath % img_id).convert("RGB")

        target = self.get_groundtruth(index)
        target = target.clip_to_image(remove_empty=True)

        if self.transforms is not None:
            img, target = self.transforms(img, target)

        return img, target, index

    def __len__(self):
        return len(self.ids)

    def get_groundtruth(self, index):
        img_id = self.ids[index]
        anno = ET.parse(self._annopath % img_id).getroot()
        anno = self._preprocess_annotation(anno)

        height, width = anno["im_info"]
        target = BoxList(anno["boxes"], (width, height), mode="xyxy")
        target.add_field("labels", anno["labels"])
        target.add_field("difficult", anno["difficult"])
        return target

    def _preprocess_annotation(self, target):
        boxes = []
        gt_classes = []
        difficult_boxes = []
        TO_REMOVE = 1

        for obj in target.iter("object"):
            difficult = int(obj.find("difficult").text) == 1
            if not self.keep_difficult and difficult:
                continue
            name = obj.find("name").text.lower().strip()
            bb = obj.find("bndbox")
            # Make pixel indexes 0-based
            # Refer to "https://github.com/rbgirshick/py-faster-rcnn/blob/master/lib/datasets/pascal_voc.py#L208-L211"
            box = [
                bb.find("xmin").text,
                bb.find("ymin").text,
                bb.find("xmax").text,
                bb.find("ymax").text,
            ]
            bndbox = tuple(map(lambda x: x - TO_REMOVE, list(map(int, box))))

            boxes.append(bndbox)
            gt_classes.append(self.class_to_ind[name])
            difficult_boxes.append(difficult)

        size = target.find("size")
        im_info = tuple(map(int, (size.find("height").text, size.find("width").text)))

        res = {
            "boxes": torch.tensor(boxes, dtype=torch.float32),
            "labels": torch.tensor(gt_classes),
            "difficult": torch.tensor(difficult_boxes),
            "im_info": im_info,
        }
        return res

    def get_img_info(self, index):
        img_id = self.ids[index]
        anno = ET.parse(self._annopath % img_id).getroot()
        size = anno.find("size")
        im_info = tuple(map(int, (size.find("height").text, size.find("width").text)))
        return {"height": im_info[0], "width": im_info[1]}

    def map_class_id_to_class_name(self, class_id):
        return PascalVOCDataset.CLASSES[class_id]