Spaces:
Sleeping
Sleeping
File size: 23,310 Bytes
749745d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 |
# Utilities for converting object detection data into grounding data
import numpy as np
import torch
import pdb, json, random, re
from maskrcnn_benchmark.structures.bounding_box import BoxList
from maskrcnn_benchmark.data.datasets.tsv import load_from_yaml_file
from collections import defaultdict
from tqdm import tqdm
from maskrcnn_benchmark.data.datasets.parse_gpt import GPTOutputParser
from ._pos_rate import PosRateController, PosRateControllerLength, PosRateControllerV2
def chunks(lst, n):
"""Yield successive n-sized chunks from lst."""
all_ = []
for i in range(0, len(lst), n):
data_index = lst[i:i + n]
all_.append(data_index)
counter = 0
for i in all_:
counter += len(i)
assert(counter == len(lst))
return all_
def clean_name(name):
def _clean_name(name):
name = re.sub(r"\(.*\)", "", name)
name = re.sub(r"_", " ", name)
name = re.sub(r" ", " ", name)
return name
if ":" in name:
obj_name, part_name = name.split(":")
obj_name = _clean_name(obj_name)
part_name = _clean_name(part_name)
return part_name + " of " + obj_name
else:
return _clean_name(name)
def clean_string(input_string):
# remove leading and trailing spaces
input_string = input_string.strip()
# remove trailing ";" and "."
input_string = re.sub(r";$", "", input_string)
input_string = re.sub(r"\.$", "", input_string)
return input_string
class DetectionToGrounding():
'''
Convert detection data into grounding data;
Construct prompts for training and inference;
'''
def __init__(self, version):
pass
class DescriptionConverter():
def __init__(
self,
description_file,
od_to_grounding_version,
categories,
ind_to_class,
similarity_file = None,):
self.description_file = description_file
self.od_to_grounding_version = od_to_grounding_version
self.categories = categories
self.name_to_def = {}
for cat in self.categories:
try:
self.name_to_def[cat["name"]] = cat["def"]
except:
pass
if description_file is not None:
with open(description_file, "r") as f:
self.description_list = json.load(f)
self.gpt_parser = GPTOutputParser(od_to_grounding_version.split(".")[-1])
#self.preparse_descriptions()
self.category_name_to_description = {}
for i in self.description_list:
# {'object': 'aerosol_can', 'object_id': 1, 'gpt3_output': '"\n{\"type\": \"vegetable\", \n\"description\": \"cylindrical, green, smooth; could have brown and rough stems; could be sliced into round pieces; could has green leaves\", \n\"similar objects\": [\"cucumber\", \"eggplant\", \"green bean\"]}"}'}
self.category_name_to_description[i["object"]] = i
# stats to print warning
self.drop_label_count = 0
self.all_count = 0
self.ind_to_class = ind_to_class
if similarity_file is not None:
with open(similarity_file, "r") as f:
self.category_name_to_similarity = json.load(f)
if "control_pos" in od_to_grounding_version:
self.pos_rate_controller = PosRateControllerLength(max_length = 9, center_length=8)
self.pos_rates = []
def inference_od_to_grounding(self, dataset, cfg, negative_label=None, negative_index=None):
categories = dataset.categories()
labels = []
label_list = []
keys = list(categories.keys())
keys.sort()
if negative_label is not None:
labels.append(negative_label)
label_list.append(categories[negative_label])
else:
for i in keys:
labels.append(i)
label_list.append(categories[i])
if cfg.TEST.CHUNKED_EVALUATION != -1:
labels = chunks(labels, cfg.TEST.CHUNKED_EVALUATION)
label_list = chunks(label_list, cfg.TEST.CHUNKED_EVALUATION)
else:
labels = [labels]
label_list = [label_list]
all_queries = []
all_positive_map_label_to_token = []
from transformers import AutoTokenizer
# tokenizer = AutoTokenizer.from_pretrained("bert-base-uncased")
if cfg.MODEL.LANGUAGE_BACKBONE.TOKENIZER_TYPE == "bert-base-uncased":
tokenizer = AutoTokenizer.from_pretrained("bert-base-uncased")
elif cfg.MODEL.LANGUAGE_BACKBONE.TOKENIZER_TYPE == "roberta-base":
tokenizer = AutoTokenizer.from_pretrained("roberta-base")
elif cfg.MODEL.LANGUAGE_BACKBONE.TOKENIZER_TYPE == "clip":
from transformers import CLIPTokenizerFast
if cfg.MODEL.DYHEAD.FUSE_CONFIG.MLM_LOSS:
tokenizer = CLIPTokenizerFast.from_pretrained("openai/clip-vit-base-patch32",
from_slow=True, mask_token='ðŁĴij</w>')
else:
tokenizer = CLIPTokenizerFast.from_pretrained("openai/clip-vit-base-patch32",
from_slow=True)
else:
tokenizer = None
raise NotImplementedError
for i in tqdm(range(len(labels))):
labels_i = labels[i]
label_list_i = label_list[i]
query_i, positive_map_label_to_token_i = self._create_queries_and_maps(
labels_i, label_list_i, additional_labels = cfg.DATASETS.SUPRESS_QUERY if cfg.DATASETS.USE_SUPRESS_QUERY else None, cfg = cfg, tokenizer = tokenizer, negative_label=negative_label, negative_index=negative_index)
all_queries.append(query_i)
all_positive_map_label_to_token.append(positive_map_label_to_token_i)
print("All queries", all_queries)
return all_queries, all_positive_map_label_to_token
def _create_queries_and_maps(self, labels, label_list, additional_labels = None, cfg = None, tokenizer = None, negative_label=None, negative_index=None):
label_to_positions, objects_query, label_to_spans, label_to_positive_spans = self._generate_senetence_given_labels(labels, self.ind_to_class, disable_shuffle=True, negative_label=negative_label, negative_index=negative_index)
tokens_positive = [[label_to_positions[i]] for i in labels]
print(objects_query)
if cfg.MODEL.LANGUAGE_BACKBONE.TOKENIZER_TYPE == "bert-base-uncased" or cfg.MODEL.LANGUAGE_BACKBONE.TOKENIZER_TYPE == "roberta-base":
tokenized = tokenizer(objects_query, return_tensors="pt")
elif cfg.MODEL.LANGUAGE_BACKBONE.TOKENIZER_TYPE == "clip":
tokenized = tokenizer(objects_query,
max_length=cfg.MODEL.LANGUAGE_BACKBONE.MAX_QUERY_LEN,
truncation=True,
return_tensors="pt")
else:
raise NotImplementedError
# Create the mapping between tokenized sentence and the original label
positive_map_token_to_label, positive_map_label_to_token = self._infer_create_positive_dict(
tokenized,
tokens_positive,
labels=labels) # from token position to original label
# Create the spans, and the span maps
if cfg.MODEL.DYHEAD.FUSE_CONFIG.SPAN_VERSION is not None:
if "sep_span" in self.od_to_grounding_version:
all_spans = []
for k, v in label_to_spans.items():
all_spans.append(v)
all_spans = sorted(all_spans, key=lambda x: x[0][0])
all_spans_flattered = []
for i in all_spans:
all_spans_flattered += i
else:
all_spans = []
for k, v in label_to_spans.items():
all_spans += v
# sort the spans based on the start index
all_spans = sorted(all_spans, key=lambda x: x[0])
all_spans_flattered = all_spans
span_map = self._infer_create_span_map(all_spans_flattered, label_to_positive_spans)
positive_map_label_to_token = (positive_map_label_to_token, span_map, all_spans)
return objects_query, positive_map_label_to_token
def _infer_create_positive_dict(self, tokenized, tokens_positive, labels):
"""construct a dictionary such that positive_map[i] = j, iff token i is mapped to j label"""
positive_map = defaultdict(int)
# Additionally, have positive_map_label_to_tokens
positive_map_label_to_token = defaultdict(list)
for j, tok_list in enumerate(tokens_positive):
for (beg, end) in tok_list:
beg_pos = tokenized.char_to_token(beg)
end_pos = tokenized.char_to_token(end - 1)
if beg_pos is None:
try:
beg_pos = tokenized.char_to_token(beg + 1)
if beg_pos is None:
beg_pos = tokenized.char_to_token(beg + 2)
except:
beg_pos = None
if end_pos is None:
try:
end_pos = tokenized.char_to_token(end - 2)
if end_pos is None:
end_pos = tokenized.char_to_token(end - 3)
except:
end_pos = None
if beg_pos is None or end_pos is None:
continue
assert beg_pos is not None and end_pos is not None
for i in range(beg_pos, end_pos + 1):
positive_map[i] = labels[j] # because the labels starts from 1
positive_map_label_to_token[labels[j]].append(i)
# positive_map[j, beg_pos : end_pos + 1].fill_(1)
return positive_map, positive_map_label_to_token # / (positive_map.sum(-1)[:, None] + 1e-6)
def _infer_create_span_map(self, all_spans, label_to_positive_spans):
# input: boxes, num_box to spans mapping
# output: boxes, spans, num_box to spans mapping
index_spans = {}
for i, span in enumerate(all_spans):
index_spans[tuple(span)] = i
span_map = defaultdict(list)
for label, spans in label_to_positive_spans.items():
span_map[label].extend([index_spans[tuple(span)] for span in spans])
return span_map
def train_od_to_grounding(self,
target,
image_id,
ind_to_class,
tokenizer,
random_sample_negative=8):
'''
1. _random_label_selection: select which labels to include in the caption
2. _generate_senetence_given_labels: generate a caption given the selected labels
3. _create_new_target: create the new target (optionally drop the boxes if positive label is missing)
'''
separation_tokens = ". "
max_num_labels = 8
if "description.gpt" in self.od_to_grounding_version:
max_num_labels = 8
if "description.baseline" in self.od_to_grounding_version:
max_num_labels = 8
max_seq_length = 254
if "sep_span" in self.od_to_grounding_version:
max_num_labels = random_sample_negative #
if random_sample_negative == 8:
max_seq_length = 254 # hacky to reproduce the results
else:
max_seq_length = int(254 * random_sample_negative / 8) # hacky to maintain the results
screened_label_list = self._random_label_selection(
all_labels = list(ind_to_class.keys()),
ind_to_class = ind_to_class,
max_seq_length = max_seq_length,
max_num_labels = max_num_labels,
tokenizer = tokenizer,
positive_label_set = set(target.extra_fields["labels"].tolist()),
)
label_to_positions, pheso_caption, label_to_spans, label_to_positive_spans = self._generate_senetence_given_labels(
label_list=screened_label_list,
ind_to_class=ind_to_class,)
new_target, greenlight_span_for_masked_lm_objective, new_target_boxlist = self._create_new_target(target, image_id, label_to_positions, label_to_spans)
return new_target, pheso_caption, greenlight_span_for_masked_lm_objective, label_to_positions, new_target_boxlist
def _random_label_selection(self, all_labels, ind_to_class, max_seq_length, max_num_labels, tokenizer, positive_label_set):
if "complete_random" in self.od_to_grounding_version:
random_label_num = np.random.choice(max_num_labels + 1)
shuffle_label_list = [i for i in all_labels]
random.shuffle(shuffle_label_list)
screened_label_list = shuffle_label_list[:random_label_num]
return screened_label_list
full_positive = len(positive_label_set)
full_negative = max_num_labels - full_positive
outer_prob = random.random()
if "control_pos" in self.od_to_grounding_version:
num_positives, num_negatives = self.pos_rate_controller(full_positive, len(all_labels))
elif "allow_zero" in self.od_to_grounding_version:
if outer_prob < 0.5:
num_negatives = full_negative
num_positives = full_positive
elif outer_prob < 0.6:
num_negatives = np.random.choice(max(1, full_negative + 1)) # mininum 1
num_positives = full_positive
else:
num_positives = np.random.choice(max(1, full_positive + 1)) # mininum 1
num_negatives = full_negative
elif "keep_all" in self.od_to_grounding_version:
num_positives = full_positive
num_negatives = full_negative
else:
if outer_prob < 0.5:
num_negatives = full_negative
num_positives = full_positive
elif outer_prob < 0.6:
num_negatives = np.random.choice(max(1, full_negative)) + 1 # mininum 1
num_positives = full_positive
else:
num_positives = np.random.choice(max(1, full_positive)) + 1 # mininum 1
num_negatives = full_negative
# Keep some negatives
negative_label_list = [label for label in all_labels if label not in positive_label_set]
random.shuffle(negative_label_list)
negative_label_list = negative_label_list[:num_negatives]
# Keep some positives
positive_label_list = list(positive_label_set)
random.shuffle(positive_label_list)
positive_label_list = positive_label_list[:num_positives]
selected_label_list = positive_label_list + negative_label_list
screened_label_list = self._label_drop_with_length_limit(selected_label_list, ind_to_class, max_seq_length, tokenizer)
# calculate the current positive rate
_screened_label_list = set(screened_label_list)
_pos_label_list = set(positive_label_list).intersection(_screened_label_list)
if "control_pos" in self.od_to_grounding_version:
self.pos_rate_controller.update_true_pos_rate(len(_pos_label_list), max(len(screened_label_list), 1.0))
return screened_label_list
def _generate_sentence(self, label, ind_to_class, pheso_caption = "", force_mode = None, negative_label=None, negative_index=None):
start_index = len(pheso_caption)
category_name = ind_to_class[label]
clean_category_name = clean_name(category_name)
# generate_version
od_to_grounding_version = ".".join(self.od_to_grounding_version.split(".")[:3])
range_version = "partial"
if od_to_grounding_version == "description.gpt.v10":
if negative_label is not None:
if negative_index == 0:
description = self.category_name_to_description[category_name]["gpt3_output"]
else:
from copy import deepcopy
description = deepcopy(self.category_name_to_description[category_name]["gpt3_output"])
try:
neg_desc = self.category_name_to_description[category_name]['chatgpt_negatives'].split('\n')[negative_index-1]
except:
neg_desc = self.category_name_to_description[category_name]['chatgpt_negatives'].split('\n')[-1]
description = json.loads(description)
description['description'] = neg_desc
description = json.dumps(description)
else:
description = self.category_name_to_description[category_name]["gpt3_output"]
if "infer" in self.od_to_grounding_version:
prob = 0.0
else:
prob = random.random()
if "independent" in self.od_to_grounding_version:
func = self.gpt_parser.form_span_independent
else:
func = self.gpt_parser.form_span
if prob < 0.5:
des_caption_i, end_index, spans, positive_spans = func(
noun=clean_category_name,
description=description,
type = "vanilla_span",
start_index = start_index,
positive_range = range_version,
od_to_grounding_version=self.od_to_grounding_version)
else:
des_caption_i, end_index, spans, positive_spans = func(
noun=clean_category_name,
description=description,
type = "remove_noun_span",
start_index = start_index,
positive_range = range_version,
od_to_grounding_version=self.od_to_grounding_version)
end_index = len(pheso_caption) + end_index
pheso_caption += des_caption_i
return pheso_caption, (start_index, end_index), spans, positive_spans
else:
raise NotImplementedError
return pheso_caption, (start_index, end_index), None, None
def _generate_senetence_given_labels(
self,
label_list,
ind_to_class,
disable_shuffle=False,
negative_label=None,
negative_index=None,
):
'''
given a label list, generate a caption (with descriptions)
also generate a label_to_positions dictionary
'''
label_to_positions = {}
label_to_spans = {}
label_to_positive_spans = {} #
if not disable_shuffle:
random.shuffle(label_list)
pheso_caption = "Detect: "
for index, label in enumerate(label_list):
pheso_caption, (start_index, end_index), spans, positive_spans = self._generate_sentence(label, ind_to_class, pheso_caption, negative_label=negative_label, negative_index=negative_index)
# need to record the spans
label_to_positions[label] = (start_index, end_index)
label_to_spans[label] = spans
label_to_positive_spans[label] = positive_spans
return label_to_positions, pheso_caption, label_to_spans, label_to_positive_spans
def _create_new_target(self, target, image_id, label_to_positions, label_to_spans = None, label_to_positive_spans = None):
new_target = []
areas = target.area()
#greenlight_span_for_masked_lm_objective = []
for i in range(len(target)):
new_target_i = {}
new_target_i["area"] = areas[i]
new_target_i["iscrowd"] = 0
new_target_i["image_id"] = image_id
new_target_i["category_id"] = target.extra_fields["labels"][i].item()
new_target_i["id"] = None
new_target_i['bbox'] = target.bbox[i].numpy().tolist()
label_i = target.extra_fields["labels"][i].item()
new_target_i["original_od_label"] = label_i
if label_i in label_to_positions: # NOTE: Only add labels that actually appear in the final caption
new_target_i["tokens_positive"] = [label_to_positions[label_i]]
if label_to_positive_spans is not None: # NOTE: Use label_to_positive_spans instead of label_to_spans; as certain spans can be negative
new_target_i["spans_positive"] = label_to_positive_spans[label_i]
new_target.append(new_target_i)
#greenlight_span_for_masked_lm_objective.append(label_to_positions[label_i])
if "sep_span" in self.od_to_grounding_version:
all_spans = []
for k, v in label_to_spans.items(): # NOTE: Use the label_to_spans to get all the spans
all_spans.append(v)
all_spans = sorted(all_spans, key=lambda x: x[0][0])
# max_spans_per_seq = max([len(i) for i in all_spans])
# all_spans_tensor = torch.ones((len(all_spans), max_spans_per_seq, 2), dtype=torch.long) * -1
# for i, spans in enumerate(all_spans):
# for j, span in enumerate(spans):
# all_spans_tensor[i, j, :] = torch.as_tensor(span)
elif "span" in self.od_to_grounding_version:
all_spans = []
for k, v in label_to_spans.items():
all_spans += v
# sort the spans based on the start index
all_spans = sorted(all_spans, key=lambda x: x[0])
all_spans = torch.as_tensor(all_spans)
else:
all_spans = None
# reconstruct the target
new_target_boxlist = BoxList(torch.as_tensor([i['bbox'] for i in new_target]).reshape(-1, 4), target.size, mode="xyxy")
new_target_boxlist.add_field("labels", torch.as_tensor([i['category_id'] for i in new_target]))
if all_spans is not None:
new_target_boxlist.add_field("spans", all_spans)
greenlight_span_for_masked_lm_objective = [value for value in label_to_positions.values()]
return new_target, greenlight_span_for_masked_lm_objective, new_target_boxlist
def _label_drop_with_length_limit(self, label_list, ind_to_class, length_limit, tokenizer):
screened_label_list = []
random.shuffle(label_list) # randomly drop labels
for label in label_list:
pheso_caption, *_ = self._generate_sentence(label, ind_to_class, "")
tokenized = tokenizer.tokenize(pheso_caption)
length_limit -= len(tokenized)
if length_limit > 0:
screened_label_list.append(label) # keep this label
else:
break
self.all_count += 1
if len(screened_label_list) < len(label_list):
self.drop_label_count += 1
if self.drop_label_count / self.all_count > 0.3:
print("Warning: {} of {} examples have dropped labels".format(self.drop_label_count, self.all_count))
return screened_label_list
|