File size: 23,310 Bytes
749745d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
# Utilities for converting object detection data into grounding data
import numpy as np
import torch
import pdb, json, random, re
from maskrcnn_benchmark.structures.bounding_box import BoxList
from maskrcnn_benchmark.data.datasets.tsv import load_from_yaml_file
from collections import defaultdict
from tqdm import tqdm
from maskrcnn_benchmark.data.datasets.parse_gpt import GPTOutputParser
from ._pos_rate import PosRateController, PosRateControllerLength, PosRateControllerV2
def chunks(lst, n):
    """Yield successive n-sized chunks from lst."""
    all_ = []
    for i in range(0, len(lst), n):
        data_index = lst[i:i + n]
        all_.append(data_index)
    counter = 0
    for i in all_:
        counter += len(i)
    assert(counter == len(lst))

    return all_

def clean_name(name):

    def _clean_name(name):
        name = re.sub(r"\(.*\)", "", name)
        name = re.sub(r"_", " ", name)
        name = re.sub(r"  ", " ", name)
        return name

    if ":" in name:
        obj_name, part_name = name.split(":")
        obj_name = _clean_name(obj_name)
        part_name = _clean_name(part_name)
        return  part_name + " of " + obj_name
    else:
        return _clean_name(name)

def clean_string(input_string):
    # remove leading and trailing spaces
    input_string = input_string.strip()
    # remove trailing ";" and "."
    input_string = re.sub(r";$", "", input_string)
    input_string = re.sub(r"\.$", "", input_string)
    return input_string


class DetectionToGrounding():
    '''
    Convert detection data into grounding data;
    Construct prompts for training and inference;
    '''
    def __init__(self, version):
        pass


class DescriptionConverter():
    def __init__(
            self,
            description_file,
            od_to_grounding_version,
            categories,
            ind_to_class,
            similarity_file = None,):
        self.description_file = description_file
        self.od_to_grounding_version = od_to_grounding_version
        self.categories = categories
        self.name_to_def = {}
        for cat in self.categories:
            try:
                self.name_to_def[cat["name"]] = cat["def"]
            except:
                pass
        if description_file is not None:
            with open(description_file, "r") as f:
                self.description_list = json.load(f)

            self.gpt_parser = GPTOutputParser(od_to_grounding_version.split(".")[-1])
            #self.preparse_descriptions()

            self.category_name_to_description = {}
            for i in self.description_list:
                # {'object': 'aerosol_can', 'object_id': 1, 'gpt3_output': '"\n{\"type\": \"vegetable\", \n\"description\": \"cylindrical, green, smooth; could have brown and rough stems; could be sliced into round pieces; could has green leaves\", \n\"similar objects\": [\"cucumber\", \"eggplant\", \"green bean\"]}"}'}
                self.category_name_to_description[i["object"]] = i

        # stats to print warning
        self.drop_label_count = 0
        self.all_count = 0

        self.ind_to_class = ind_to_class

        if similarity_file is not None:
            with open(similarity_file, "r") as f:
                self.category_name_to_similarity = json.load(f)

        if "control_pos" in od_to_grounding_version:
            self.pos_rate_controller = PosRateControllerLength(max_length = 9, center_length=8)

        self.pos_rates = []

    def inference_od_to_grounding(self, dataset, cfg, negative_label=None, negative_index=None):
        categories = dataset.categories()

        labels = []
        label_list = []
        keys = list(categories.keys())
        keys.sort()
        if negative_label is not None:
            labels.append(negative_label)
            label_list.append(categories[negative_label])
        else:
            for i in keys:
                labels.append(i)
                label_list.append(categories[i])

        if cfg.TEST.CHUNKED_EVALUATION != -1:
            labels = chunks(labels, cfg.TEST.CHUNKED_EVALUATION)
            label_list = chunks(label_list, cfg.TEST.CHUNKED_EVALUATION)
        else:
            labels = [labels]
            label_list = [label_list]

        all_queries = []
        all_positive_map_label_to_token = []

        from transformers import AutoTokenizer
        # tokenizer = AutoTokenizer.from_pretrained("bert-base-uncased")
        if cfg.MODEL.LANGUAGE_BACKBONE.TOKENIZER_TYPE == "bert-base-uncased":
            tokenizer = AutoTokenizer.from_pretrained("bert-base-uncased")
        elif cfg.MODEL.LANGUAGE_BACKBONE.TOKENIZER_TYPE == "roberta-base":
            tokenizer = AutoTokenizer.from_pretrained("roberta-base")
        elif cfg.MODEL.LANGUAGE_BACKBONE.TOKENIZER_TYPE == "clip":
            from transformers import CLIPTokenizerFast
            if cfg.MODEL.DYHEAD.FUSE_CONFIG.MLM_LOSS:
                tokenizer = CLIPTokenizerFast.from_pretrained("openai/clip-vit-base-patch32",
                                                                            from_slow=True, mask_token='ðŁĴij</w>')
            else:
                tokenizer = CLIPTokenizerFast.from_pretrained("openai/clip-vit-base-patch32",
                                                                            from_slow=True)
        else:
            tokenizer = None
            raise NotImplementedError

        for i in tqdm(range(len(labels))):
            labels_i = labels[i]
            label_list_i = label_list[i]
            query_i, positive_map_label_to_token_i = self._create_queries_and_maps(
                labels_i, label_list_i, additional_labels = cfg.DATASETS.SUPRESS_QUERY if cfg.DATASETS.USE_SUPRESS_QUERY else None, cfg = cfg, tokenizer = tokenizer, negative_label=negative_label, negative_index=negative_index)

            all_queries.append(query_i)
            all_positive_map_label_to_token.append(positive_map_label_to_token_i)
        print("All queries", all_queries)
        return all_queries, all_positive_map_label_to_token

    def _create_queries_and_maps(self, labels, label_list, additional_labels = None, cfg = None, tokenizer = None, negative_label=None, negative_index=None):

        label_to_positions, objects_query, label_to_spans, label_to_positive_spans = self._generate_senetence_given_labels(labels, self.ind_to_class, disable_shuffle=True, negative_label=negative_label, negative_index=negative_index)
        tokens_positive = [[label_to_positions[i]] for i in labels]
        print(objects_query)
        if cfg.MODEL.LANGUAGE_BACKBONE.TOKENIZER_TYPE == "bert-base-uncased" or cfg.MODEL.LANGUAGE_BACKBONE.TOKENIZER_TYPE == "roberta-base":
            tokenized = tokenizer(objects_query, return_tensors="pt")
        elif cfg.MODEL.LANGUAGE_BACKBONE.TOKENIZER_TYPE == "clip":
            tokenized = tokenizer(objects_query,
                                max_length=cfg.MODEL.LANGUAGE_BACKBONE.MAX_QUERY_LEN,
                                truncation=True,
                                return_tensors="pt")
        else:
            raise NotImplementedError
        # Create the mapping between tokenized sentence and the original label
        positive_map_token_to_label, positive_map_label_to_token = self._infer_create_positive_dict(
            tokenized,
            tokens_positive,
            labels=labels)  # from token position to original label

        # Create the spans, and the span maps
        if cfg.MODEL.DYHEAD.FUSE_CONFIG.SPAN_VERSION is not None:
            if "sep_span" in self.od_to_grounding_version:
                all_spans = []
                for k, v in label_to_spans.items():
                    all_spans.append(v)
                all_spans = sorted(all_spans, key=lambda x: x[0][0])
                all_spans_flattered = []
                for i in all_spans:
                    all_spans_flattered += i

            else:
                all_spans = []
                for k, v in label_to_spans.items():
                    all_spans += v
                # sort the spans based on the start index
                all_spans = sorted(all_spans, key=lambda x: x[0])
                all_spans_flattered = all_spans

            span_map = self._infer_create_span_map(all_spans_flattered, label_to_positive_spans)
            positive_map_label_to_token = (positive_map_label_to_token, span_map, all_spans)

        return objects_query, positive_map_label_to_token


    def _infer_create_positive_dict(self, tokenized, tokens_positive, labels):
        """construct a dictionary such that positive_map[i] = j, iff token i is mapped to j label"""
        positive_map = defaultdict(int)

        # Additionally, have positive_map_label_to_tokens
        positive_map_label_to_token = defaultdict(list)

        for j, tok_list in enumerate(tokens_positive):
            for (beg, end) in tok_list:
                beg_pos = tokenized.char_to_token(beg)
                end_pos = tokenized.char_to_token(end - 1)
                if beg_pos is None:
                    try:
                        beg_pos = tokenized.char_to_token(beg + 1)
                        if beg_pos is None:
                            beg_pos = tokenized.char_to_token(beg + 2)
                    except:
                        beg_pos = None
                if end_pos is None:
                    try:
                        end_pos = tokenized.char_to_token(end - 2)
                        if end_pos is None:
                            end_pos = tokenized.char_to_token(end - 3)
                    except:
                        end_pos = None
                if beg_pos is None or end_pos is None:
                    continue

                assert beg_pos is not None and end_pos is not None
                for i in range(beg_pos, end_pos + 1):
                    positive_map[i] = labels[j]  # because the labels starts from 1
                    positive_map_label_to_token[labels[j]].append(i)
                # positive_map[j, beg_pos : end_pos + 1].fill_(1)
        return positive_map, positive_map_label_to_token  # / (positive_map.sum(-1)[:, None] + 1e-6)

    def _infer_create_span_map(self, all_spans, label_to_positive_spans):
        # input: boxes, num_box to spans mapping
        # output: boxes, spans, num_box to spans mapping
        index_spans = {}
        for i, span in enumerate(all_spans):
            index_spans[tuple(span)] = i

        span_map = defaultdict(list)
        for label, spans in label_to_positive_spans.items():
            span_map[label].extend([index_spans[tuple(span)] for span in spans])
        return span_map


    def train_od_to_grounding(self,
            target,
            image_id,
            ind_to_class,
            tokenizer,
            random_sample_negative=8):

        '''
        1. _random_label_selection: select which labels to include in the caption
        2. _generate_senetence_given_labels: generate a caption given the selected labels
        3. _create_new_target: create the new target (optionally drop the boxes if positive label is missing)
        '''

        separation_tokens = ". "
        max_num_labels = 8
        if "description.gpt" in self.od_to_grounding_version:
            max_num_labels = 8
        if "description.baseline" in self.od_to_grounding_version:
            max_num_labels = 8

        max_seq_length = 254
        if "sep_span" in self.od_to_grounding_version:
            max_num_labels = random_sample_negative #
            if random_sample_negative == 8:
                max_seq_length = 254 # hacky to reproduce the results
            else:
                max_seq_length = int(254 * random_sample_negative / 8) # hacky to maintain the results

        screened_label_list = self._random_label_selection(
                all_labels = list(ind_to_class.keys()),
                ind_to_class = ind_to_class,
                max_seq_length = max_seq_length,
                max_num_labels = max_num_labels,
                tokenizer = tokenizer,
                positive_label_set = set(target.extra_fields["labels"].tolist()),
            )
        label_to_positions, pheso_caption, label_to_spans, label_to_positive_spans = self._generate_senetence_given_labels(
                label_list=screened_label_list,
                ind_to_class=ind_to_class,)

        new_target, greenlight_span_for_masked_lm_objective, new_target_boxlist = self._create_new_target(target, image_id, label_to_positions, label_to_spans)
        return new_target, pheso_caption, greenlight_span_for_masked_lm_objective, label_to_positions, new_target_boxlist

    def _random_label_selection(self, all_labels, ind_to_class, max_seq_length, max_num_labels, tokenizer, positive_label_set):

        if "complete_random" in self.od_to_grounding_version:
            random_label_num = np.random.choice(max_num_labels + 1)
            shuffle_label_list = [i for i in all_labels]
            random.shuffle(shuffle_label_list)
            screened_label_list = shuffle_label_list[:random_label_num]
            return screened_label_list

        full_positive = len(positive_label_set)
        full_negative = max_num_labels - full_positive

        outer_prob = random.random()

        if "control_pos" in self.od_to_grounding_version:
            num_positives, num_negatives = self.pos_rate_controller(full_positive, len(all_labels))

        elif "allow_zero" in self.od_to_grounding_version:
            if outer_prob < 0.5:
                num_negatives = full_negative
                num_positives = full_positive
            elif outer_prob < 0.6:
                num_negatives = np.random.choice(max(1, full_negative + 1))  # mininum 1
                num_positives = full_positive
            else:
                num_positives = np.random.choice(max(1, full_positive + 1)) # mininum 1
                num_negatives = full_negative
        elif "keep_all" in self.od_to_grounding_version:
            num_positives = full_positive
            num_negatives = full_negative
        else:
            if outer_prob < 0.5:
                num_negatives = full_negative
                num_positives = full_positive
            elif outer_prob < 0.6:
                num_negatives = np.random.choice(max(1, full_negative)) + 1  # mininum 1
                num_positives = full_positive
            else:
                num_positives = np.random.choice(max(1, full_positive)) + 1  # mininum 1
                num_negatives = full_negative

        # Keep some negatives
        negative_label_list = [label for label in all_labels if label not in positive_label_set]
        random.shuffle(negative_label_list)
        negative_label_list = negative_label_list[:num_negatives]

        # Keep some positives
        positive_label_list = list(positive_label_set)
        random.shuffle(positive_label_list)
        positive_label_list = positive_label_list[:num_positives]

        selected_label_list = positive_label_list + negative_label_list
        screened_label_list = self._label_drop_with_length_limit(selected_label_list, ind_to_class, max_seq_length, tokenizer)

        # calculate the current positive rate
        _screened_label_list = set(screened_label_list)
        _pos_label_list = set(positive_label_list).intersection(_screened_label_list)
        if "control_pos" in self.od_to_grounding_version:
            self.pos_rate_controller.update_true_pos_rate(len(_pos_label_list), max(len(screened_label_list), 1.0))

        return screened_label_list

    def _generate_sentence(self, label, ind_to_class, pheso_caption = "", force_mode = None, negative_label=None, negative_index=None):
        start_index = len(pheso_caption)
        category_name = ind_to_class[label]
        clean_category_name = clean_name(category_name)

        # generate_version
        od_to_grounding_version = ".".join(self.od_to_grounding_version.split(".")[:3])
        range_version = "partial"

        if od_to_grounding_version == "description.gpt.v10":
            if negative_label is not None:
                if negative_index == 0:
                    description = self.category_name_to_description[category_name]["gpt3_output"]
                else:
                    from copy import deepcopy
                    description = deepcopy(self.category_name_to_description[category_name]["gpt3_output"])
                    try:
                        neg_desc = self.category_name_to_description[category_name]['chatgpt_negatives'].split('\n')[negative_index-1]
                    except:
                        neg_desc = self.category_name_to_description[category_name]['chatgpt_negatives'].split('\n')[-1]
                    description = json.loads(description)
                    description['description'] = neg_desc
                    description = json.dumps(description)
            else:
                description = self.category_name_to_description[category_name]["gpt3_output"]
            if "infer" in self.od_to_grounding_version:
                prob = 0.0
            else:
                prob = random.random()

            if "independent" in self.od_to_grounding_version:
                func = self.gpt_parser.form_span_independent
            else:
                func = self.gpt_parser.form_span

            if prob < 0.5:
                des_caption_i, end_index, spans, positive_spans = func(
                    noun=clean_category_name,
                    description=description,
                    type = "vanilla_span",
                    start_index = start_index,
                    positive_range = range_version,
                    od_to_grounding_version=self.od_to_grounding_version)
            else:
                des_caption_i, end_index, spans, positive_spans = func(
                    noun=clean_category_name,
                    description=description,
                    type = "remove_noun_span",
                    start_index = start_index,
                    positive_range = range_version,
                    od_to_grounding_version=self.od_to_grounding_version)
            end_index = len(pheso_caption) + end_index
            pheso_caption += des_caption_i
            return pheso_caption, (start_index, end_index), spans, positive_spans

        else:
            raise NotImplementedError


        return pheso_caption, (start_index, end_index), None, None

    def _generate_senetence_given_labels(
            self,
            label_list,
            ind_to_class,
            disable_shuffle=False,
            negative_label=None,
            negative_index=None,
        ):
        '''
        given a label list, generate a caption (with descriptions)
        also generate a label_to_positions dictionary
        '''

        label_to_positions = {}
        label_to_spans = {}
        label_to_positive_spans = {} #
        if not disable_shuffle:
            random.shuffle(label_list)

        pheso_caption = "Detect: "

        for index, label in enumerate(label_list):

            pheso_caption, (start_index, end_index), spans, positive_spans = self._generate_sentence(label, ind_to_class, pheso_caption, negative_label=negative_label, negative_index=negative_index)

            # need to record the spans

            label_to_positions[label] = (start_index, end_index)
            label_to_spans[label] = spans
            label_to_positive_spans[label] = positive_spans
        return label_to_positions, pheso_caption, label_to_spans, label_to_positive_spans

    def _create_new_target(self, target, image_id, label_to_positions, label_to_spans = None, label_to_positive_spans = None):
        new_target = []
        areas = target.area()
        #greenlight_span_for_masked_lm_objective = []
        for i in range(len(target)):
            new_target_i = {}
            new_target_i["area"] = areas[i]
            new_target_i["iscrowd"] = 0
            new_target_i["image_id"] = image_id
            new_target_i["category_id"] = target.extra_fields["labels"][i].item()
            new_target_i["id"] = None
            new_target_i['bbox'] = target.bbox[i].numpy().tolist()

            label_i = target.extra_fields["labels"][i].item()
            new_target_i["original_od_label"] = label_i

            if label_i in label_to_positions:  # NOTE: Only add labels that actually appear in the final caption
                new_target_i["tokens_positive"] = [label_to_positions[label_i]]

                if label_to_positive_spans is not None: # NOTE: Use label_to_positive_spans instead of label_to_spans; as certain spans can be negative
                    new_target_i["spans_positive"] = label_to_positive_spans[label_i]
                new_target.append(new_target_i)
                #greenlight_span_for_masked_lm_objective.append(label_to_positions[label_i])

        if "sep_span" in self.od_to_grounding_version:
            all_spans = []
            for k, v in label_to_spans.items():  # NOTE: Use the label_to_spans to get all the spans
                all_spans.append(v)
            all_spans = sorted(all_spans, key=lambda x: x[0][0])

            # max_spans_per_seq = max([len(i) for i in all_spans])
            # all_spans_tensor = torch.ones((len(all_spans), max_spans_per_seq, 2), dtype=torch.long) * -1
            # for i, spans in enumerate(all_spans):
            #     for j, span in enumerate(spans):
            #         all_spans_tensor[i, j, :] = torch.as_tensor(span)

        elif "span" in self.od_to_grounding_version:
            all_spans = []
            for k, v in label_to_spans.items():
                all_spans += v
            # sort the spans based on the start index
            all_spans = sorted(all_spans, key=lambda x: x[0])
            all_spans = torch.as_tensor(all_spans)
        else:
            all_spans = None

        # reconstruct the target
        new_target_boxlist = BoxList(torch.as_tensor([i['bbox'] for i in new_target]).reshape(-1, 4), target.size, mode="xyxy")
        new_target_boxlist.add_field("labels", torch.as_tensor([i['category_id'] for i in new_target]))
        if all_spans is not None:
            new_target_boxlist.add_field("spans", all_spans)
        greenlight_span_for_masked_lm_objective = [value for value in label_to_positions.values()]
        return new_target, greenlight_span_for_masked_lm_objective, new_target_boxlist

    def _label_drop_with_length_limit(self, label_list, ind_to_class, length_limit, tokenizer):
        screened_label_list = []
        random.shuffle(label_list) # randomly drop labels
        for label in label_list:
            pheso_caption, *_ = self._generate_sentence(label, ind_to_class, "")
            tokenized = tokenizer.tokenize(pheso_caption)

            length_limit -= len(tokenized)
            if length_limit > 0:
                screened_label_list.append(label) # keep this label
            else:
                break
        self.all_count += 1
        if len(screened_label_list) < len(label_list):
            self.drop_label_count += 1

        if self.drop_label_count / self.all_count > 0.3:
            print("Warning: {} of {} examples have dropped labels".format(self.drop_label_count, self.all_count))

        return screened_label_list