File size: 3,238 Bytes
13fb76e f5aa6c7 13fb76e f5aa6c7 13fb76e f5aa6c7 13fb76e f5aa6c7 13fb76e f5aa6c7 13fb76e f5aa6c7 13fb76e f5aa6c7 13fb76e f5aa6c7 13fb76e f5aa6c7 13fb76e f5aa6c7 13fb76e f5aa6c7 13fb76e f5aa6c7 13fb76e f5aa6c7 13fb76e f5aa6c7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 |
"""Server that will listen for GET and POST requests from the client."""
import time
from pathlib import Path
from typing import List
from fastapi import FastAPI, File, Form, UploadFile
from fastapi.responses import JSONResponse, Response
from concrete.ml.deployment import FHEModelServer
REPO_DIR = Path(__file__).parent
KEYS_PATH = REPO_DIR / ".fhe_keys"
MODEL_PATH = REPO_DIR / "client_folder"
SERVER_TMP_PATH = REPO_DIR / "server_tmp"
# Initialize an instance of FastAPI
app = FastAPI()
current_dir = Path(__file__).parent
# Load the model
fhe_model = FHEModelServer(Path.joinpath(current_dir, "./client_folder"))
# Define the default route
@app.get("/")
def root():
return {"message": "Welcome to Your disease prediction with fhe !"}
@app.post("/send_input")
def send_input(
user_id: str = Form(),
filter: str = Form(),
files: List[UploadFile] = File(),
):
"""Send the inputs to the server."""
# Retrieve the encrypted input image and the evaluation key paths
evaluation_key_path = SERVER_TMP_PATH / f"{user_id}_valuation_key"
encrypted_input_path = SERVER_TMP_PATH / f"{user_id}_encrypted_symptoms"
# # Write the files using the above paths
with encrypted_input_path.open("wb") as encrypted_input, evaluation_key_path.open(
"wb"
) as evaluation_key:
encrypted_input.write(files[0].file.read())
evaluation_key.write(files[1].file.read())
# @app.post("/run_fhe")
# def run_fhe(
# user_id: str = Form(),
# filter: str = Form(),
# ):
# """Execute the filter on the encrypted input image using FHE."""
# Retrieve the encrypted input image and the evaluation key paths
# encrypted_image_path = get_server_file_path("encrypted_image", user_id, filter)
# evaluation_key_path = get_server_file_path("evaluation_key", user_id, filter)
# Read the files using the above paths
# with encrypted_image_path.open("rb") as encrypted_image_file, evaluation_key_path.open(
# "rb"
# ) as evaluation_key_file:
# encrypted_image = encrypted_image_file.read()
# evaluation_key = evaluation_key_file.read()
# Load the FHE server
# fhe_server = FHEServer(FILTERS_PATH / f"{filter}/deployment")
# Run the FHE execution
# start = time.time()
# encrypted_output_image = fhe_server.run(encrypted_image, evaluation_key)
# fhe_execution_time = round(time.time() - start, 2)
# Retrieve the encrypted output image path
# encrypted_output_path = get_server_file_path("encrypted_output", user_id, filter)
# Write the file using the above path
# with encrypted_output_path.open("wb") as encrypted_output:
# encrypted_output.write(encrypted_output_image)
# return JSONResponse(content=fhe_execution_time)
# @app.post("/get_output")
# def get_output(
# user_id: str = Form(),
# filter: str = Form(),
# ):
# """Retrieve the encrypted output image."""
# Retrieve the encrypted output image path
# encrypted_output_path = get_server_file_path("encrypted_output", user_id, filter)
# Read the file using the above path
# with encrypted_output_path.open("rb") as encrypted_output_file:
# encrypted_output = encrypted_output_file.read()
|