File size: 14,825 Bytes
13fb76e 2f69603 13fb76e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 |
import pickle as pkl
import shutil
from pathlib import Path
from time import time
from typing import List, Tuple, Union
import gradio as gr
import numpy as np
import pandas as pd
from sklearn import metrics, preprocessing
from sklearn.ensemble import RandomForestClassifier as SklearnRandomForestClassifier
from sklearn.model_selection import train_test_split
from concrete.ml.common.serialization.loaders import load, loads
from concrete.ml.deployment import FHEModelClient, FHEModelDev, FHEModelServer
from concrete.ml.sklearn import XGBClassifier as ConcreteXGBoostClassifier
path_to_model = Path("./client_folder").resolve()
import subprocess
from preprocessing import ( # pylint: disable=wrong-import-position, no-name-in-module
map_prediction,
pretty_print,
)
from symptoms_categories import SYMPTOMS_LIST
ENCRYPTED_DATA_BROWSER_LIMIT = 500
# This repository's directory
REPO_DIR = Path(__file__).parent
print(f"{REPO_DIR=}")
# subprocess.Popen(["uvicorn", "server:app"], cwd=REPO_DIR)
# time.sleep(3)
def load_data():
# Load data
df_train = pd.read_csv("./data/Training_preprocessed.csv")
df_test = pd.read_csv("./data/Testing_preprocessed.csv")
# Separate the traget from the training set
# df['prognosis] contains the name of the disease
# df['y] contains the numeric label of the disease
y_train = df_train["y"]
X_train = df_train.drop(columns=["y", "prognosis"], axis=1, errors="ignore")
y_test = df_train["y"]
X_test = df_test.drop(columns=["y", "prognosis"], axis=1, errors="ignore")
return (df_train, X_train, X_test), (df_test, y_train, y_test)
def load_model(X_train, y_train):
concrete_args = {"max_depth": 1, "n_bits": 3, "n_estimators": 3, "n_jobs": -1}
classifier = ConcreteXGBoostClassifier(**concrete_args)
classifier.fit(X_train, y_train)
circuit = classifier.compile(X_train)
return classifier, circuit
def key_gen():
# Key serialization
user_id = np.random.randint(0, 2**32)
client = FHEModelClient(path_dir=path_to_model, key_dir=f".fhe_keys/{user_id}")
client.load()
# The client first need to create the private and evaluation keys.
client.generate_private_and_evaluation_keys()
# Get the serialized evaluation keys
serialized_evaluation_keys = client.get_serialized_evaluation_keys()
assert isinstance(serialized_evaluation_keys, bytes)
np.save(f".fhe_keys/{user_id}/eval_key.npy", serialized_evaluation_keys)
serialized_evaluation_keys_shorten = list(serialized_evaluation_keys)[:200]
serialized_evaluation_keys_shorten_hex = "".join(
f"{i:02x}" for i in serialized_evaluation_keys_shorten
)
# Evaluation keys can be quite large files but only have to be shared once with the server.
# Check the size of the evaluation keys (in MB)
return [
serialized_evaluation_keys_shorten_hex,
user_id,
f"{len(serialized_evaluation_keys) / (10**6):.2f} MB",
]
def encode_quantize_encrypt(user_symptoms, user_id):
# check if the key has been generated
client = FHEModelClient(path_dir=path_to_model, key_dir=f".fhe_keys/{user_id}")
client.load()
user_symptoms = np.fromstring(user_symptoms[2:-2], dtype=int, sep=".").reshape(1, -1)
quant_user_symptoms = client.model.quantize_input(user_symptoms)
encrypted_quantized_user_symptoms = client.quantize_encrypt_serialize(user_symptoms)
# print(client.model.predict(vect_x, fhe="simulate"), client.model.predict(vect_x, fhe="execute"))
# pred_s = client.model.fhe_circuit.simulate(quant_vect)
# pred_fhe = client.model.fhe_circuit.encrypt_run_decrypt(quant_vect) #
# non alpha -> \X1124, base64 ou en exa
# Compute size
np.save(f".fhe_keys/{user_id}/encrypted_quant_vect.npy", encrypted_quantized_user_symptoms)
encrypted_quantized_encoding_shorten = list(encrypted_quantized_user_symptoms)[:200]
encrypted_quantized_encoding_shorten_hex = "".join(
f"{i:02x}" for i in encrypted_quantized_encoding_shorten
)
return user_symptoms, quant_user_symptoms, encrypted_quantized_encoding_shorten_hex
def decrypt_prediction(encrypted_quantized_vect, user_id):
fhe_api = FHEModelClient(path_dir=path_to_model, key_dir=f".fhe_keys/{user_id}")
fhe_api.load()
fhe_api.generate_private_and_evaluation_keys(force=False)
predictions = fhe_api.deserialize_decrypt_dequantize(encrypted_quantized_vect)
return predictions
def get_user_vect_symptoms_from_checkboxgroup(*user_symptoms) -> np.array:
symptoms_vector = {key: 0 for key in valid_columns}
for symptom_box in user_symptoms:
for pretty_symptom in symptom_box:
symptom = "_".join((pretty_symptom.lower().split(" ")))
if symptom not in symptoms_vector.keys():
raise KeyError(
f"The symptom '{symptom}' you provided is not recognized as a valid "
f"symptom.\nHere is the list of valid symptoms: {symptoms_vector}"
)
symptoms_vector[symptom] = 1.0
user_symptoms_vect = np.fromiter(symptoms_vector.values(), dtype=float)[np.newaxis, :]
assert all(value == 0 or value == 1 for value in user_symptoms_vect.flatten())
return user_symptoms_vect
def get_user_vect_symptoms_from_default_disease(disease):
user_symptom_vector = df_test[df_test["prognosis"] == disease].iloc[0].values
user_symptoms_vect = np.fromiter(user_symptom_vector[:-2], dtype=float)[np.newaxis, :]
assert all(value == 0 or value == 1 for value in user_symptoms_vect.flatten())
return user_symptoms_vect
def get_user_symptoms_from_default_disease(disease):
df_filtred = df_test[df_test["prognosis"] == disease]
columns_with_1 = df_filtred.columns[df_filtred.eq(1).any()].to_list()
return pretty_print(columns_with_1)
def get_user_symptoms_vector(selected_default_disease, *selected_symptoms):
if any(lst for lst in selected_symptoms if lst) and (
selected_default_disease is not None and len(selected_default_disease) > 0
):
# If the user has already selected a disease and added more symptoms, raise an error
if set(pretty_print(selected_symptoms)) - set(
get_user_symptoms_from_default_disease(selected_default_disease)
):
return {
user_vector_textbox: gr.update(value="An error occurs"),
error_box: gr.update(
visible=True, value="Enter a default disease or select your own symptoms"
),
}
# If the user has not selected a default disease or symptoms, an error is raised.
if not any(lst for lst in selected_symptoms if lst) and (
selected_default_disease is None
or (selected_default_disease is not None and len(selected_default_disease) < 1)
):
return {
user_vector_textbox: gr.update(value="An error occurs"),
error_box: gr.update(
visible=True, value="Enter a default disease or select your own symptoms"
),
}
# Case 1: The user has checked his own symptoms
if any(lst for lst in selected_symptoms if lst):
return {
user_vector_textbox: get_user_vect_symptoms_from_checkboxgroup(*selected_symptoms),
}
# Case 2: The user has selected a default disease
if selected_default_disease is not None and len(selected_default_disease) > 0:
return {
user_vector_textbox: get_user_vect_symptoms_from_default_disease(
selected_default_disease
),
error_box: gr.update(visible=False),
**{
box: get_user_symptoms_from_default_disease(selected_default_disease)
for box in check_boxes
},
}
def clear_all_buttons():
return {
user_id_textbox: None,
eval_key_textbox: None,
eval_key_len_textbox: None,
user_vector_textbox: None,
box_default: None,
error_box: gr.update(visible=False),
**{box: None for box in check_boxes},
}
if __name__ == "__main__":
print("Starting demo ...")
(df_train, X_train, X_test), (df_test, y_train, y_test) = load_data()
valid_columns = X_train.columns.to_list()
with gr.Blocks() as demo:
# Link + images
gr.Markdown(
"""
<p align="center">
<img width=200 src="https://user-images.githubusercontent.com/5758427/197816413-d9cddad3-ba38-4793-847d-120975e1da11.png">
</p>
<h2 align="center">Health Prediction On Encrypted Data Using Homomorphic Encryption.</h2>
<p align="center">
<a href="https://github.com/zama-ai/concrete-ml"> <img style="vertical-align: middle; display:inline-block; margin-right: 3px;" width=15 src="https://user-images.githubusercontent.com/5758427/197972109-faaaff3e-10e2-4ab6-80f5-7531f7cfb08f.png">Concrete-ML</a>
—
<a href="https://docs.zama.ai/concrete-ml"> <img style="vertical-align: middle; display:inline-block; margin-right: 3px;" width=15 src="https://user-images.githubusercontent.com/5758427/197976802-fddd34c5-f59a-48d0-9bff-7ad1b00cb1fb.png">Documentation</a>
—
<a href="https://zama.ai/community"> <img style="vertical-align: middle; display:inline-block; margin-right: 3px;" width=15 src="https://user-images.githubusercontent.com/5758427/197977153-8c9c01a7-451a-4993-8e10-5a6ed5343d02.png">Community</a>
—
<a href="https://twitter.com/zama_fhe"> <img style="vertical-align: middle; display:inline-block; margin-right: 3px;" width=15 src="https://user-images.githubusercontent.com/5758427/197975044-bab9d199-e120-433b-b3be-abd73b211a54.png">@zama_fhe</a>
</p>
<p align="center">
<img src="https://raw.githubusercontent.com/kcelia/Img/main/demo-img2.png" width="60%" height="60%">
</p>
"""
)
# Gentle introduction
gr.Markdown("## Introduction")
gr.Markdown("""Blablabla""")
# User symptoms
gr.Markdown("# Step 1: Provide your symptoms")
gr.Markdown("Client side")
# Default disease, picked from the dataframe
with gr.Row():
default_diseases = list(set(df_test["prognosis"]))
box_default = gr.Dropdown(default_diseases, label="Disease")
# Box symptoms
check_boxes = []
for i, category in enumerate(SYMPTOMS_LIST):
check_box = gr.CheckboxGroup(
pretty_print(category.values()),
label=pretty_print(category.keys()),
info=f"Symptoms related to `{pretty_print(category.values())}`",
max_batch_size=45,
)
check_boxes.append(check_box)
# User symptom vector
with gr.Row():
user_vector_textbox = gr.Textbox(
label="User symptoms (vector)",
interactive=False,
max_lines=100,
)
error_box = gr.Textbox(label="Error", visible=False)
with gr.Row():
# Submit botton
with gr.Column():
submit_button = gr.Button("Submit")
# Clear botton
with gr.Column():
clear_button = gr.Button("Clear", style="background-color: yellow;")
# Click submit botton
submit_button.click(
fn=get_user_symptoms_vector,
inputs=[box_default, *check_boxes],
outputs=[user_vector_textbox, error_box, *check_boxes],
)
# Load the model
concrete_classifier = load(
open("ConcreteXGBoostClassifier.pkl", "r", encoding="utf-8")
)
gr.Markdown("# Step 2: Generate the keys")
gr.Markdown("Client side")
gen_key = gr.Button("Generate the keys and send public part to server")
with gr.Row():
# User ID
with gr.Column(scale=1, min_width=600):
user_id_textbox = gr.Textbox(
label="User ID:",
max_lines=4,
interactive=False,
)
# Evaluation key size
with gr.Column(scale=1, min_width=600):
eval_key_len_textbox = gr.Textbox(
label="Evaluation key size:", max_lines=4, interactive=False
)
with gr.Row():
# Evaluation key (truncated)
with gr.Column(scale=2, min_width=600):
eval_key_textbox = gr.Textbox(
label="Evaluation key (truncated):",
max_lines=4,
interactive=False,
)
gen_key.click(key_gen, outputs=[eval_key_textbox, user_id_textbox, eval_key_len_textbox])
clear_button.click(
clear_all_buttons,
outputs=[
user_id_textbox,
user_vector_textbox,
eval_key_textbox,
eval_key_len_textbox,
box_default,
error_box,
*check_boxes,
],
)
gr.Markdown("# Step 3: Encode the message with the private key")
gr.Markdown("Client side")
encode_msg = gr.Button("Generate the keys and send public part to server")
with gr.Row():
with gr.Column(scale=1, min_width=600):
vect_textbox = gr.Textbox(
label="Vector:",
max_lines=4,
interactive=False,
)
with gr.Column(scale=1, min_width=600):
quant_vect_textbox = gr.Textbox(
label="Quant vector:", max_lines=4, interactive=False
)
with gr.Column(scale=1, min_width=600):
encrypted_vect_textbox = gr.Textbox(
label="Encrypted vector:", max_lines=4, interactive=False
)
encode_msg.click(
encode_quantize_encrypt,
inputs=[user_vector_textbox, user_id_textbox],
outputs=[vect_textbox, quant_vect_textbox, encrypted_vect_textbox],
)
gr.Markdown("# Step 4: Run the FHE evaluation")
gr.Markdown("Server side")
run_fhe = gr.Button("Run the FHE evaluation")
gr.Markdown("# Step 5: Decrypt the sentiment")
gr.Markdown("Server side")
decrypt_target_botton = gr.Button("Decrypt the sentiment")
decrypt_target_textbox = gr.Textbox(
label="Encrypted vector:", max_lines=4, interactive=False
)
decrypt_target_botton.click(
decrypt_prediction,
inputs=[encrypted_vect_textbox, user_id_textbox],
outputs=[decrypt_target_textbox],
)
demo.launch()
|