File size: 13,989 Bytes
646bd9e
 
174cd37
 
 
 
646bd9e
 
174cd37
df6182e
d812385
174cd37
 
 
 
 
 
646bd9e
 
 
174cd37
df6182e
646bd9e
174cd37
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d812385
174cd37
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2b591f4
 
 
 
 
 
646bd9e
2b591f4
646bd9e
 
 
174cd37
 
 
 
 
 
df6182e
174cd37
 
 
 
 
 
 
 
 
 
 
df6182e
 
174cd37
 
 
 
 
 
 
 
df6182e
 
 
 
 
 
 
 
 
 
 
174cd37
 
 
 
 
df6182e
 
174cd37
df6182e
 
 
 
 
 
 
628fe8f
df6182e
 
 
 
 
 
 
 
b160148
646bd9e
 
b160148
646bd9e
 
 
 
 
 
 
 
 
 
 
174cd37
646bd9e
 
 
 
 
 
174cd37
 
 
 
 
 
 
 
 
 
 
525f3d3
174cd37
 
 
 
 
 
 
 
 
 
 
 
 
525f3d3
174cd37
 
 
 
 
 
 
 
 
525f3d3
 
174cd37
 
 
 
 
 
 
646bd9e
bbc133a
525f3d3
174cd37
 
bbc133a
 
174cd37
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bbc133a
174cd37
 
 
 
 
 
 
 
 
 
 
 
 
 
646bd9e
d812385
174cd37
 
 
 
 
 
 
 
 
 
 
 
 
646bd9e
174cd37
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
646bd9e
174cd37
 
 
 
 
 
 
 
 
 
b160148
174cd37
646bd9e
174cd37
 
 
646bd9e
174cd37
646bd9e
174cd37
 
 
646bd9e
 
 
174cd37
 
 
 
 
 
 
df6182e
 
174cd37
 
 
 
 
 
 
df6182e
174cd37
 
df6182e
 
646bd9e
174cd37
 
 
 
 
 
 
 
 
646bd9e
2b591f4
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
"""A Gradio app for anonymizing text data using FHE."""

import os
import re
from typing import Dict, List

import gradio as gr
import pandas as pd
from fhe_anonymizer import FHEAnonymizer
from openai import OpenAI
from utils_demo import *

ORIGINAL_DOCUMENT = read_txt(ORIGINAL_FILE_PATH).split("\n\n")
ANONYMIZED_DOCUMENT = read_txt(ANONYMIZED_FILE_PATH)
MAPPING_SENTENCES = read_pickle(MAPPING_SENTENCES_PATH)

clean_directory()

anonymizer = FHEAnonymizer()

client = OpenAI(api_key=os.environ.get("openaikey"))


def select_static_sentences_fn(selected_sentences: List):

    selected_sentences = [MAPPING_SENTENCES[sentence] for sentence in selected_sentences]

    anonymized_selected_sentence = sorted(selected_sentences, key=lambda x: x[0])

    anonymized_selected_sentence = [sentence for _, sentence in anonymized_selected_sentence]

    return {anonymized_doc_box: gr.update(value="\n\n".join(anonymized_selected_sentence))}


def key_gen_fn() -> Dict:
    """Generate keys for a given user.

    Returns:
        dict: A dictionary containing the generated keys and related information.
    """
    print("Key Gen..")

    anonymizer.generate_key()

    evaluation_key_path = KEYS_DIR / "evaluation_key"

    if not evaluation_key_path.is_file():
        error_message = (
            f"Error Encountered While generating the evaluation {evaluation_key_path.is_file()=}"
        )
        print(error_message)
        return {gen_key_btn: gr.update(value=error_message)}
    else:
        return {gen_key_btn: gr.update(value="Keys have been generated βœ…")}


def encrypt_query_fn(query):
    print(f"Query: {query}")

    evaluation_key_path = KEYS_DIR / "evaluation_key"

    if not evaluation_key_path.is_file():
        error_message = "Error ❌: Please generate the key first!"
        return {output_encrypted_box: gr.update(value=error_message)}

    if is_user_query_valid(query):
        # TODO: check if the query is related to our context
        error_msg = (
            "Unable to process ❌: The request exceeds the length limit or falls "
            "outside the scope of this document. Please refine your query."
        )
        print(error_msg)
        return {query_box: gr.update(value=error_msg)}

    anonymizer.encrypt_query(query)

    encrypted_tokens = read_pickle(KEYS_DIR / "encrypted_quantized_query")

    encrypted_quant_tokens_hex = [token.hex()[500:510] for token in encrypted_tokens]

    return {output_encrypted_box: gr.update(value=" ".join(encrypted_quant_tokens_hex))}


def run_fhe_fn(query_box):

    evaluation_key_path = KEYS_DIR / "evaluation_key"
    if not evaluation_key_path.is_file():
        error_message = "Error ❌: Please generate the key first!"
        return {anonymized_text_output: gr.update(value=error_message)}

    encryted_query_path = KEYS_DIR / "encrypted_quantized_query"
    if not encryted_query_path.is_file():
        error_message = "Error ❌: Please encrypt your query first!"
        return {anonymized_text_output: gr.update(value=error_message)}

    anonymizer.run_server_and_decrypt_output(query_box)

    anonymized_text = read_pickle(KEYS_DIR / "reconstructed_sentence")
    identified_words_with_prob = read_pickle(KEYS_DIR / "identified_words_with_prob")

    # Convert the list of identified words and probabilities into a DataFrame
    if identified_words_with_prob:
        identified_df = pd.DataFrame(
            identified_words_with_prob, columns=["Identified Words", "Probability"]
        )
    else:
        identified_df = pd.DataFrame(columns=["Identified Words", "Probability"])
    return anonymized_text, identified_df


def query_chatgpt_fn(anonymized_query, anonymized_document):

    evaluation_key_path = KEYS_DIR / "evaluation_key"
    if not evaluation_key_path.is_file():
        error_message = "Error ❌: Please generate the key first!"
        return {anonymized_text_output: gr.update(value=error_message)}

    encryted_query_path = KEYS_DIR / "encrypted_quantized_query"
    if not encryted_query_path.is_file():
        error_message = "Error ❌: Please encrypt your query first!"
        return {anonymized_text_output: gr.update(value=error_message)}

    decrypted_query_path = KEYS_DIR / "reconstructed_sentence"
    if not decrypted_query_path.is_file():
        error_message = "Error ❌: Please run the FHE computation first!"
        return {anonymized_text_output: gr.update(value=error_message)}

    prompt = read_txt(PROMPT_PATH)

    # Prepare prompt
    full_prompt = prompt + "\n"
    query = (
        "Document content:\n```\n"
        + anonymized_document
        + "\n\n```"
        + "Query:\n```\n"
        + anonymized_query
        + "\n```"
    )
    print(full_prompt)

    completion = client.chat.completions.create(
        model="gpt-4-1106-preview",  # Replace with "gpt-4" if available
        messages=[
            {"role": "system", "content": prompt},
            {"role": "user", "content": query},
        ],
    )
    anonymized_response = completion.choices[0].message.content
    uuid_map = read_json(MAPPING_UUID_PATH)

    inverse_uuid_map = {
        v: k for k, v in uuid_map.items()
    }  # TODO load the inverse mapping from disk for efficiency

    # Pattern to identify words and non-words (including punctuation, spaces, etc.)
    tokens = re.findall(r"(\b[\w\.\/\-@]+\b|[\s,.!?;:'\"-]+)", anonymized_response)
    processed_tokens = []

    for token in tokens:
        # Directly append non-word tokens or whitespace to processed_tokens
        if not token.strip() or not re.match(r"\w+", token):
            processed_tokens.append(token)
            continue

        if token in inverse_uuid_map:
            processed_tokens.append(inverse_uuid_map[token])
        else:
            processed_tokens.append(token)
    deanonymized_response = "".join(processed_tokens)
    return anonymized_response, deanonymized_response


demo = gr.Blocks(css=".markdown-body { font-size: 18px; }")

with demo:

    gr.Markdown(
        """
        <p align="center">
            <img width=200 src="file/images/logos/zama.jpg">
        </p>
        <h1 style="text-align: center;">Encrypted Anonymization Using Fully Homomorphic Encryption</h1>
        <p align="center">
            <a href="https://github.com/zama-ai/concrete-ml"> <img style="vertical-align: middle; display:inline-block; margin-right: 3px;" width=15 src="file/images/logos/github.png">Concrete-ML</a>
            β€”
            <a href="https://docs.zama.ai/concrete-ml"> <img style="vertical-align: middle; display:inline-block; margin-right: 3px;" width=15 src="file/images/logos/documentation.png">Documentation</a>
            β€”
            <a href=" https://community.zama.ai/c/concrete-ml/8"> <img style="vertical-align: middle; display:inline-block; margin-right: 3px;" width=15 src="file/images/logos/community.png">Community</a>
            β€”
            <a href="https://twitter.com/zama_fhe"> <img style="vertical-align: middle; display:inline-block; margin-right: 3px;" width=15 src="file/images/logos/x.png">@zama_fhe</a>
        </p>
        """
    )

    # gr.Markdown(
    #     """
    #     <p align="center">
    #         <img width="15%" height="15%" src="./encrypted_anonymization_diagram.jpg">
    #     </p>
    #     """
    # )

    with gr.Accordion("What is encrypted anonymization?", open=False):
        gr.Markdown(
<<<<<<< HEAD
        """
        Anonymization is the process of removing personally identifiable information (PII) 
=======
            """Anonymization is the process of removing personally identifiable information (PII) 
>>>>>>> 053bec9 (chore: update with marketing remarks)
        from data to protect individual privacy.
    
        To resolve trust issues when deploying anonymization as a cloud service, Fully Homomorphic 
        Encryption (FHE) can be used to preserve the privacy of the original data using 
        encryption.

        The data remains encrypted throughout the anonymization process, eliminating the need for 
        third-party access to the raw data. Once the data is anonymized, it can safely be sent 
        to GenAI services such as ChatGPT.
        """
        )

    ########################## Key Gen Part ##########################

    gr.Markdown(
        "### Key generation\n\n"
        """In FHE schemes, two sets of keys are generated. First, secret keys are used for 
        encrypting and decrypting data owned by the client. Second, evaluation keys allow a server 
        to blindly process the encrypted data. """
    )

    gen_key_btn = gr.Button("Generate the private and evaluation keys")

    gen_key_btn.click(
        key_gen_fn,
        inputs=[],
        outputs=[gen_key_btn],
    )

    ########################## Main document Part ##########################

    gr.Markdown("## Private document")

    with gr.Row():
        with gr.Column():
            gr.Markdown(
                """This document was retrieved from the [Microsoft Presidio](https://huggingface.co/spaces/presidio/presidio_demo) demo.\n\n     
                You can select and deselect sentences to customize the document that will be used 
                as the initial prompt for ChatGPT in this space's final stage.\n\n
                """
            )
        with gr.Column():
            gr.Markdown(
                """You can see the anonymized document that is sent to ChatGPT here. 
                ChatGPT will answer any queries that you have about the document below. 
                The anonymized information is replaced with hexadecimal strings. 
                """
            )

    with gr.Row():
        with gr.Column():
            original_sentences_box = gr.CheckboxGroup(
                ORIGINAL_DOCUMENT, value=ORIGINAL_DOCUMENT, label="Original document:"
            )

        with gr.Column():
            anonymized_doc_box = gr.Textbox(
                label="Anonymized document:", value=ANONYMIZED_DOCUMENT, interactive=False, lines=11
            )

    original_sentences_box.change(
        fn=select_static_sentences_fn,
        inputs=[original_sentences_box],
        outputs=[anonymized_doc_box],
    )

    ########################## User Query Part ##########################

    gr.Markdown("<hr />")
    gr.Markdown("## Private query")

    gr.Markdown(
        """Now, formulate a query regarding the selected document.\n\n

                Choose from predefined options in 'Example Queries' or craft a custom query 
                in the 'User Query' box. Keep your question concise and relevant to the text's 
                context. Any off-topic question will not be processed.
                """
    )

    with gr.Row():
        with gr.Column(scale=5):

            with gr.Column(scale=5):
                default_query_box = gr.Dropdown(
                    list(DEFAULT_QUERIES.values()), label="Example queries"
                )

            query_box = gr.Textbox(
                value="Who lives in Maine?", label="User query", interactive=True
            )

            default_query_box.change(
                fn=lambda default_query_box: default_query_box,
                inputs=[default_query_box],
                outputs=[query_box],
            )

        with gr.Column(scale=1, min_width=6):
            gr.HTML("<div style='height: 25px;'></div>")

            gr.Markdown(
                """
                <p align="center">
                Encrypt data locally with FHE πŸ’» βš™οΈ
                </p>
                """
            )
            encrypt_btn = gr.Button("Encrypt data")
            gr.HTML("<div style='height: 25px;'></div>")

        with gr.Column(scale=5):
            output_encrypted_box = gr.Textbox(
                label="Encrypted anonymized query that is sent to the anonymization server", lines=6
            )

    encrypt_btn.click(
        fn=encrypt_query_fn, inputs=[query_box], outputs=[query_box, output_encrypted_box]
    )

    gr.Markdown("<hr />")
    gr.Markdown("## Secure anonymization with FHE")
    gr.Markdown(
        """
        Once the client encrypts the private query locally, 
        the client transmits it to a remote server to perform the 
        anonymization on encrypted data. When the computation is finished, the server returns 
        the result to the client for decryption.
        """
    )

    run_fhe_btn = gr.Button("Anonymize with FHE")

    anonymized_text_output = gr.Textbox(
        label="Decrypted anonymized query that will be sent to ChatGPT", lines=1, interactive=True
    )

    identified_words_output = gr.Dataframe(label="Identified words", visible=False)

    run_fhe_btn.click(
        run_fhe_fn,
        inputs=[query_box],
        outputs=[anonymized_text_output, identified_words_output],
    )

    gr.Markdown("<hr />")

    gr.Markdown("## Secure your communication on ChatGPT with anonymized queries")
    gr.Markdown(
        """After securely anonymizing the query with FHE, 
                you can forward it to ChatGPT without any concern for information leakage."""
    )

    chatgpt_button = gr.Button("Query ChatGPT")

    with gr.Row():
        chatgpt_response_anonymized = gr.Textbox(label="ChatGPT anonymized response", lines=13)
        chatgpt_response_deanonymized = gr.Textbox(
            label="ChatGPT non-anonymized response", lines=13
        )

    chatgpt_button.click(
        query_chatgpt_fn,
        inputs=[anonymized_text_output, anonymized_doc_box],
        outputs=[chatgpt_response_anonymized, chatgpt_response_deanonymized],
    )

    gr.Markdown(
        """**Please Note**: As this space is intended solely for demonstration purposes, some 
        private information may be missed the the anonymization algorithm. Please validate the 
        following query before sending it to ChatGPT."""
    )
<<<<<<< HEAD
=======

>>>>>>> 053bec9 (chore: update with marketing remarks)
# Launch the app
demo.launch(share=False)