File size: 18,184 Bytes
87d688d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 |
#! /usr/bin/env python3
# coding=utf-8
# This code is licensed under a non-commercial license.
import os
import sys
import argparse
from tqdm import trange
import torch
import torch.nn.functional as F
import numpy as np
from IPython import embed
from operator import add
from style_utils import to_var, top_k_logits
import pickle
import csv
from gpt2tunediscrim import ClassificationHead
#lab_root = os.path.join(os.path.abspath(os.path.dirname(__file__)), '..', '..')
#sys.path.insert(1, lab_root)
from pytorch_pretrained_bert import GPT2LMHeadModel, GPT2Tokenizer
SmallConst = 1e-15
enc = GPT2Tokenizer.from_pretrained('gpt-2_pt_models/345M/')
def perturb_past(past, model, prev, args, classifier, good_index=None, stepsize=0.01, vocab_size=50257,
original_probs=None, accumulated_hidden=None, true_past=None, grad_norms=None):
window_length = args.window_length
gm_scale, kl_scale = args.fusion_gm_scale, args.fusion_kl_scale
one_hot_vectors = []
for good_list in good_index:
good_list = list(filter(lambda x: len(x) <= 1, good_list))
good_list = torch.tensor(good_list).cuda()
num_good = good_list.shape[0]
one_hot_good = torch.zeros(num_good, vocab_size).cuda()
one_hot_good.scatter_(1, good_list, 1)
one_hot_vectors.append(one_hot_good)
# Generate inital perturbed past
past_perturb_orig = [(np.random.uniform(0.0, 0.0, p.shape).astype('float32'))
for p in past]
if accumulated_hidden is None:
accumulated_hidden = 0
if args.decay:
decay_mask = torch.arange(0., 1.0 + SmallConst, 1.0/(window_length))[1:]
else:
decay_mask = 1.0
# Generate a mask is gradient perturbated is based on a past window
_, _, _, current_length, _ = past[0].shape
if current_length > window_length and window_length > 0:
ones_key_val_shape = tuple(past[0].shape[:-2]) + tuple([window_length]) + tuple(
past[0].shape[-1:])
zeros_key_val_shape = tuple(past[0].shape[:-2]) + tuple([current_length - window_length]) + tuple(
past[0].shape[-1:])
ones_mask = torch.ones(ones_key_val_shape)
ones_mask = decay_mask*ones_mask.permute(0, 1, 2, 4, 3)
ones_mask = ones_mask.permute(0, 1, 2, 4, 3)
window_mask = torch.cat((ones_mask, torch.zeros(zeros_key_val_shape)), dim=-2).cuda()
else:
window_mask = torch.ones_like(past[0]).cuda()
loss_per_iter = []
for i in range(args.num_iterations):
past_perturb = [torch.from_numpy(p_) for p_ in past_perturb_orig]
past_perturb = [to_var(p_, requires_grad=True) for p_ in past_perturb]
perturbed_past = list(map(add, past, past_perturb))
_, _, _, current_length, _ = past_perturb[0].shape
# Compute hidden using perturbed past
_, future_past = model(prev, past=perturbed_past)
hidden = model.hidden_states
new_accumulated_hidden = accumulated_hidden + torch.sum(hidden, dim=1).detach()
# TODO: Check the layer-norm consistency of this with trained discriminator
logits = model.forward_hidden(hidden)
logits = logits[:, -1, :]
probabs = F.softmax(logits, dim=-1)
loss = 0.0
loss_list = []
if args.loss_type == 1 or args.loss_type == 3:
for one_hot_good in one_hot_vectors:
good_logits = torch.mm(probabs, torch.t(one_hot_good))
loss_word = good_logits
loss_word = torch.sum(loss_word)
loss_word = -torch.log(loss_word)
#loss_word = torch.sum(loss_word) /torch.sum(one_hot_good)
loss += loss_word
loss_list.append(loss_word)
print('words', loss.data.cpu().numpy())
if args.loss_type == 2 or args.loss_type == 3:
ce_loss = torch.nn.CrossEntropyLoss()
new_true_past = true_past
for i in range(args.horizon_length):
future_probabs = F.softmax(logits, dim=-1) # Get softmax
future_probabs = torch.unsqueeze(future_probabs, dim=1)
_, new_true_past = model(future_probabs, past=new_true_past)
future_hidden = model.hidden_states # Get expected hidden states
new_accumulated_hidden = new_accumulated_hidden + torch.sum(future_hidden, dim=1)
predicted_sentiment = classifier(new_accumulated_hidden / (current_length + 1 + args.horizon_length))
label = torch.tensor([args.label_class], device='cuda', dtype=torch.long)
discrim_loss = ce_loss(predicted_sentiment, label)
print('discrim', discrim_loss.data.cpu().numpy())
loss += discrim_loss
loss_list.append(discrim_loss)
kl_loss = 0.0
if kl_scale > 0.0:
p = (F.softmax(original_probs[:, -1, :], dim=-1))
p = p + SmallConst * (p <= SmallConst).type(torch.FloatTensor).cuda().detach()
correction = SmallConst * (probabs <= SmallConst).type(torch.FloatTensor).cuda().detach()
corrected_probabs = probabs + correction.detach()
kl_loss = kl_scale * ((corrected_probabs * (corrected_probabs / p).log()).sum())
#print('kl_loss', kl_loss.data.cpu().numpy())
loss += kl_loss # + discrim_loss
print((loss - kl_loss).data.cpu().numpy())
loss_per_iter.append(loss.data.cpu().numpy())
loss.backward()
if grad_norms is not None and args.loss_type == 1:
grad_norms = [torch.max(grad_norms[index], torch.norm(p_.grad * window_mask)) for index, p_ in
enumerate(past_perturb)]
else:
grad_norms = [(torch.norm(p_.grad * window_mask) + SmallConst) for index, p_ in enumerate(past_perturb)]
grad = [
-stepsize * (p_.grad * window_mask / grad_norms[index] ** args.gamma).data.cpu().numpy()
for index, p_ in enumerate(past_perturb)]
past_perturb_orig = list(map(add, grad, past_perturb_orig))
for p_ in past_perturb:
p_.grad.data.zero_()
new_past = []
for p in past:
new_past.append(p.detach())
past = new_past
past_perturb = [torch.from_numpy(p_) for p_ in past_perturb_orig]
past_perturb = [to_var(p_, requires_grad=True) for p_ in past_perturb]
perturbed_past = list(map(add, past, past_perturb))
return perturbed_past, new_accumulated_hidden, grad_norms, loss_per_iter
def latent_perturb(model, args, context=None, sample=True, device='cuda'):
if args.discrim == 'clickbait':
classifier = ClassificationHead(class_size=2, embed_size=1024).to(device)
classifier.load_state_dict(torch.load("discrim_models/clickbait_classifierhead.pt"))
classifier.eval()
args.label_class = 1 # clickbaity
elif args.discrim == 'sentiment':
classifier = ClassificationHead(class_size=5, embed_size=1024).to(device)
classifier.load_state_dict(torch.load("discrim_models/sentiment_classifierhead.pt"))
classifier.eval()
if args.label_class < 0:
raise Exception('Wrong class for sentiment, use --label-class 2 for *very positive*, 3 for *very negative*')
#args.label_class = 2 # very pos
#args.label_class = 3 # very neg
elif args.discrim == 'toxicity':
classifier = ClassificationHead(class_size=2, embed_size=1024).to(device)
classifier.load_state_dict(torch.load("discrim_models/toxicity_classifierhead.pt"))
classifier.eval()
args.label_class = 0 # not toxic
else:
classifier = None
# Get tokens for the list of positive words
def list_tokens(word_list):
token_list = []
for word in word_list:
token_list.append(enc.encode(" " + word))
return token_list
good_index = []
if args.bag_of_words:
bags_of_words = args.bag_of_words.split(";")
for wordlist in bags_of_words:
with open(wordlist, "r") as f:
words = f.read()
words = words.split('\n')
good_index.append(list_tokens(words))
if args.bag_of_words and classifier:
print('Both PPLM-BoW and PPLM-Discrim are on. This is not optimized.')
args.loss_type = 3
elif args.bag_of_words:
args.loss_type = 1
print('Using PPLM-BoW')
elif classifier is not None:
args.loss_type = 2
print('Using PPLM-Discrim')
else:
raise Exception('Supply either --bag-of-words (-B) or --discrim -D')
original, _, _ = sample_from_hidden(model=model, args=args, context=context, device=device,
perturb=False, good_index=good_index, classifier=classifier)
torch.cuda.empty_cache()
perturbed_list = []
discrim_loss_list = []
loss_in_time_list = []
for i in range(args.num_samples):
perturbed, discrim_loss, loss_in_time = sample_from_hidden(model=model, args=args, context=context,
device=device, perturb=True, good_index=good_index,
classifier=classifier)
perturbed_list.append(perturbed)
if classifier is not None:
discrim_loss_list.append(discrim_loss.data.cpu().numpy())
loss_in_time_list.append(loss_in_time)
torch.cuda.empty_cache()
return original, perturbed_list, discrim_loss_list, loss_in_time_list
def sample_from_hidden(model, args, classifier, context=None, past=None, device='cuda',
sample=True, perturb=True, good_index=None):
output = torch.tensor(context, device=device, dtype=torch.long).unsqueeze(0) if context else None
grad_norms = None
loss_in_time = []
for i in trange(args.length, ascii=True):
# Get past/probs for current output, except for last word
# Note that GPT takes 2 inputs: past + current-token
# Therefore, use everything from before current i/p token to generate relevant past
if past is None and output is not None:
prev = output[:, -1:]
_, past = model(output[:, :-1])
original_probs, true_past = model(output)
true_hidden = model.hidden_states
else:
original_probs, true_past = model(output)
true_hidden = model.hidden_states
# Modify the past if necessary
if i >= args.grad_length:
current_stepsize = args.stepsize * 0
else:
current_stepsize = args.stepsize
if not perturb or args.num_iterations == 0:
perturbed_past = past
else:
accumulated_hidden = model.hidden_states[:, :-1, :]
accumulated_hidden = torch.sum(accumulated_hidden, dim=1)
perturbed_past, _, grad_norms, loss_per_iter = perturb_past(past, model, prev, args,
good_index=good_index, stepsize=current_stepsize,
original_probs=original_probs,
true_past=true_past,
accumulated_hidden=accumulated_hidden,
classifier=classifier,
grad_norms=grad_norms)
loss_in_time.append(loss_per_iter)
test_logits, past = model(prev, past=perturbed_past)
# test_logits = F.softmax(test_logits[:, -1, :], dim=-1)
# likelywords = torch.topk(test_logits, k=10, dim=-1)
# print(enc.decode(likelywords[1].tolist()[0]))
if classifier is not None:
ce_loss = torch.nn.CrossEntropyLoss()
predicted_sentiment = classifier(torch.mean(true_hidden, dim=1))
label = torch.tensor([args.label_class], device='cuda', dtype=torch.long)
true_discrim_loss = ce_loss(predicted_sentiment, label)
print("true discrim loss", true_discrim_loss.data.cpu().numpy())
else:
true_discrim_loss = 0
hidden = model.hidden_states # update hidden
logits = model.forward_hidden(hidden)
logits = logits[:, -1, :] / args.temperature # + SmallConst
# logits = top_k_logits(logits, k=args.top_k) # + SmallConst
log_probs = F.softmax(logits, dim=-1)
# Fuse the modified model and original model
if perturb:
# original_probs = top_k_logits(original_probs[:, -1, :]) #+ SmallConst
original_probs = F.softmax(original_probs[:, -1, :], dim=-1)
# likelywords = torch.topk(original_probs, k=10, dim=-1)
# print(enc.decode(likelywords[1].tolist()[0]))
gm_scale = args.fusion_gm_scale
log_probs = ((log_probs ** gm_scale) * (original_probs ** (1 - gm_scale))) # + SmallConst
log_probs = top_k_logits(log_probs, k=args.top_k, probs=True) # + SmallConst
if torch.sum(log_probs) <= 1:
log_probs = log_probs / torch.sum(log_probs)
else:
logits = top_k_logits(logits, k=args.top_k) # + SmallConst
log_probs = F.softmax(logits, dim=-1)
if sample:
# likelywords = torch.topk(log_probs, k=args.top_k, dim=-1)
# print(enc.decode(likelywords[1].tolist()[0]))
# print(likelywords[0].tolist())
prev = torch.multinomial(log_probs, num_samples=1)
else:
_, prev = torch.topk(log_probs, k=1, dim=-1)
# if perturb:
# prev = future
output = prev if output is None else torch.cat((output, prev), dim=1) # update output
print(enc.decode(output.tolist()[0]))
return output, true_discrim_loss, loss_in_time
def run_model():
parser = argparse.ArgumentParser()
parser.add_argument('--model_path', '-M', type=str, default='gpt-2_pt_models/345M/',
help='pretrained model name or path to local checkpoint')
parser.add_argument('--bag-of-words', '-B', type=str, default=None,
help='Bags of words used for PPLM-BoW. Multiple BoWs separated by ;')
parser.add_argument('--discrim', '-D', type=str, default=None,
choices=('clickbait', 'sentiment', 'toxicity'),
help='Discriminator to use for loss-type 2')
parser.add_argument('--label-class', type=int, default=-1, help='Class label used for the discriminator')
parser.add_argument('--stepsize', type=float, default=0.02)
parser.add_argument("--length", type=int, default=100)
parser.add_argument("--seed", type=int, default=0)
parser.add_argument("--temperature", type=float, default=1.0)
parser.add_argument("--top_k", type=int, default=10)
parser.add_argument("--fusion-gm-scale", type=float, default=0.9)
parser.add_argument("--fusion-kl-scale", type=float, default=0.01)
parser.add_argument('--nocuda', action='store_true', help='no cuda')
parser.add_argument('--uncond', action='store_true', help='Generate from end-of-text as prefix')
parser.add_argument("--cond-text", type=str, default='The lake', help='Prefix texts to condition on')
parser.add_argument('--num-iterations', type=int, default=3)
parser.add_argument('--grad-length', type=int, default=10000)
parser.add_argument('--num-samples', type=int, default=1,
help='Number of samples to generate from the modified latents')
parser.add_argument('--horizon-length', type=int, default=1, help='Length of future to optimize over')
# parser.add_argument('--force-token', action='store_true', help='no cuda')
parser.add_argument('--window-length', type=int, default=0,
help='Length of past which is being optimizer; 0 corresponds to infinite window length')
parser.add_argument('--decay', action='store_true', help='whether to decay or not')
parser.add_argument('--gamma', type=float, default=1.5)
args = parser.parse_args()
torch.manual_seed(args.seed)
np.random.seed(args.seed)
device = 'cpu' if args.nocuda else 'cuda'
model = GPT2LMHeadModel.from_pretrained(args.model_path)
model.to(device)
model.eval()
# Freeze GPT-2 weights
for param in model.parameters():
param.requires_grad = False
pass
if args.uncond:
seq = [[50256, 50256]]
else:
raw_text = args.cond_text
while not raw_text:
print('Did you forget to add `--cond-text`? ')
raw_text = input("Model prompt >>> ")
seq = [[50256] + enc.encode(raw_text)]
collect_gen = dict()
current_index = 0
for out in seq:
text = enc.decode(out)
print("=" * 40 + " Prefix of sentence " + "=" * 40)
print(text)
print("=" * 80)
out1, out_perturb, discrim_loss_list, loss_in_time_list = latent_perturb(model=model, args=args, context=out,
device=device)
text_whole = enc.decode(out1.tolist()[0])
print("=" * 80)
print("=" * 40 + " Whole sentence (Original)" + "=" * 40)
print(text_whole)
print("=" * 80)
out_perturb_copy = out_perturb
generated = 0
for out_perturb in out_perturb_copy:
try:
print("=" * 40 + " Whole sentence (Perturbed)" + "=" * 40)
text_whole = enc.decode(out_perturb.tolist()[0])
print(text_whole)
print("=" * 80)
except:
pass
collect_gen[current_index] = [out, out_perturb, out1]
# Save the prefix, perturbed seq, original seq for each index
current_index = current_index + 1
return
if __name__ == '__main__':
run_model()
|