File size: 2,440 Bytes
02fc79d
 
7e0679d
933893f
cfb47bd
a0a3c71
7fa9633
dca9dda
0636dcf
d19cbee
844418d
98cb8e3
cb167f0
 
572bbdb
98cb8e3
2cd932f
d19cbee
ab2986e
0e3a88c
fec42e7
9d81e7a
77b1892
d348183
77b1892
ab2986e
98cb8e3
 
 
 
 
 
 
 
 
 
d7fd676
81f5fb5
 
 
0a91bcb
7fa9633
0636dcf
8507a80
fec42e7
1911572
98cb8e3
a91f0b6
1911572
c42bc9d
45771d5
c42bc9d
98cb8e3
d353d92
6daebf6
98cb8e3
f57f2aa
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
import gradio as gr
from gpt4all import GPT4All
from urllib.request import urlopen
import json
import time
from load_llms import model_choices, llm_intro, load_model
from config import space_hardware


# Construct chatbot
def generate_response(model_name, message, chat_history):
    model = load_model(model_name)
    response = model.generate(message, max_tokens=100)
    chat_history.append((message, response))
    return "", chat_history

    
# Create Gradio UI
with gr.Blocks(
    css=".contain { display: flex !important; flex-direction: column !important; }"
    "#chatbot { flex-grow: 1 !important; overflow: auto !important; height: 80vh !important; }"
    "#col { height: calc(100vh - 112px - 16px) !important; }"
    "#submit:hover { background-color: green !important; }"
    "#clear { background-color: darkred !important; }",
    theme=gr.themes.Soft(font=[gr.themes.GoogleFont("Martel Sans")])                  
) as demo:
    gr.Markdown("# GPT4All Chatbot")
    with gr.Row():
        with gr.Column(scale=1):
            model_dropdown = gr.Dropdown(
                choices=model_choices(),  
                multiselect=False,
                type="value",
                value="orca-mini-3b-gguf2-q4_0.gguf",
                label="LLMs to choose from"
            )
            explanation = gr.Textbox(label="Model Description", interactive=False, value=llm_intro("orca-mini-3b-gguf2-q4_0.gguf"))
    
            # Link the dropdown with the textbox to update the description based on the selected model
            model_dropdown.change(fn=llm_intro, inputs=model_dropdown, outputs=explanation)

            gr.Textbox(value=f"{space_hardware()}\n2 vCPU • 16 GB RAM \nFree tier", label="Space Hardware use")


        with gr.Column(scale=4, elem_id='col'):
            chatbot = gr.Chatbot(label="Chatroom", value=[(None, "How may I help you today?")], elem_id="chatbot")

            with gr.Row():       
                message = gr.Textbox(label="Message", scale=10)
                message.submit(generate_response, inputs=[model_dropdown, message, chatbot], outputs=[message, chatbot])
                submit_button = gr.Button("Submit", scale=1, elem_id="submit")
                submit_button.click(generate_response, inputs=[model_dropdown, message, chatbot], outputs=[message, chatbot])

            clear = gr.ClearButton([message, chatbot], elem_id="clear")

# Launch the Gradio app
demo.launch()