Spaces:
Runtime error
Runtime error
File size: 10,633 Bytes
4450790 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 |
import os
import random
import sys
from typing import Sequence, Mapping, Any, Union
import torch
import gradio as gr
from PIL import Image
# Import all the necessary functions from the original script
def get_value_at_index(obj: Union[Sequence, Mapping], index: int) -> Any:
try:
return obj[index]
except KeyError:
return obj["result"][index]
# Add all the necessary setup functions from the original script
def find_path(name: str, path: str = None) -> str:
if path is None:
path = os.getcwd()
if name in os.listdir(path):
path_name = os.path.join(path, name)
print(f"{name} found: {path_name}")
return path_name
parent_directory = os.path.dirname(path)
if parent_directory == path:
return None
return find_path(name, parent_directory)
def add_comfyui_directory_to_sys_path() -> None:
comfyui_path = find_path("ComfyUI")
if comfyui_path is not None and os.path.isdir(comfyui_path):
sys.path.append(comfyui_path)
print(f"'{comfyui_path}' added to sys.path")
def add_extra_model_paths() -> None:
try:
from main import load_extra_path_config
except ImportError:
from utils.extra_config import load_extra_path_config
extra_model_paths = find_path("extra_model_paths.yaml")
if extra_model_paths is not None:
load_extra_path_config(extra_model_paths)
else:
print("Could not find the extra_model_paths config file.")
# Initialize paths
add_comfyui_directory_to_sys_path()
add_extra_model_paths()
def import_custom_nodes() -> None:
import asyncio
import execution
from nodes import init_extra_nodes
import server
loop = asyncio.new_event_loop()
asyncio.set_event_loop(loop)
server_instance = server.PromptServer(loop)
execution.PromptQueue(server_instance)
init_extra_nodes()
# Import all necessary nodes
from nodes import (
StyleModelLoader,
VAEEncode,
NODE_CLASS_MAPPINGS,
LoadImage,
CLIPVisionLoader,
SaveImage,
VAELoader,
CLIPVisionEncode,
DualCLIPLoader,
EmptyLatentImage,
VAEDecode,
UNETLoader,
CLIPTextEncode,
)
# Initialize all constant nodes and models in global context
import_custom_nodes()
# Global variables for preloaded models and constants
with torch.inference_mode():
# Initialize constants
intconstant = NODE_CLASS_MAPPINGS["INTConstant"]()
CONST_1024 = intconstant.get_value(value=1024)
# Load CLIP
dualcliploader = DualCLIPLoader()
CLIP_MODEL = dualcliploader.load_clip(
clip_name1="t5/t5xxl_fp16.safetensors",
clip_name2="clip_l.safetensors",
type="flux",
)
# Load VAE
vaeloader = VAELoader()
VAE_MODEL = vaeloader.load_vae(vae_name="FLUX1/ae.safetensors")
# Load UNET
unetloader = UNETLoader()
UNET_MODEL = unetloader.load_unet(
unet_name="flux1-depth-dev.safetensors", weight_dtype="default"
)
# Load CLIP Vision
clipvisionloader = CLIPVisionLoader()
CLIP_VISION_MODEL = clipvisionloader.load_clip(
clip_name="sigclip_vision_patch14_384.safetensors"
)
# Load Style Model
stylemodelloader = StyleModelLoader()
STYLE_MODEL = stylemodelloader.load_style_model(
style_model_name="flux1-redux-dev.safetensors"
)
# Initialize samplers
ksamplerselect = NODE_CLASS_MAPPINGS["KSamplerSelect"]()
SAMPLER = ksamplerselect.get_sampler(sampler_name="euler")
# Initialize depth model
cr_clip_input_switch = NODE_CLASS_MAPPINGS["CR Clip Input Switch"]()
downloadandloaddepthanythingv2model = NODE_CLASS_MAPPINGS["DownloadAndLoadDepthAnythingV2Model"]()
DEPTH_MODEL = downloadandloaddepthanythingv2model.loadmodel(
model="depth_anything_v2_vitl_fp32.safetensors"
)
cliptextencode = CLIPTextEncode()
loadimage = LoadImage()
vaeencode = VAEEncode()
fluxguidance = NODE_CLASS_MAPPINGS["FluxGuidance"]()
instructpixtopixconditioning = NODE_CLASS_MAPPINGS["InstructPixToPixConditioning"]()
clipvisionencode = CLIPVisionEncode()
stylemodelapplyadvanced = NODE_CLASS_MAPPINGS["StyleModelApplyAdvanced"]()
emptylatentimage = EmptyLatentImage()
basicguider = NODE_CLASS_MAPPINGS["BasicGuider"]()
basicscheduler = NODE_CLASS_MAPPINGS["BasicScheduler"]()
randomnoise = NODE_CLASS_MAPPINGS["RandomNoise"]()
samplercustomadvanced = NODE_CLASS_MAPPINGS["SamplerCustomAdvanced"]()
vaedecode = VAEDecode()
cr_text = NODE_CLASS_MAPPINGS["CR Text"]()
saveimage = SaveImage()
getimagesizeandcount = NODE_CLASS_MAPPINGS["GetImageSizeAndCount"]()
depthanything_v2 = NODE_CLASS_MAPPINGS["DepthAnything_V2"]()
imageresize = NODE_CLASS_MAPPINGS["ImageResize+"]()
def generate_image(prompt: str, structure_image: str, depth_strength: float, style_image: str, style_strength: float, progress=gr.Progress(track_tqdm=True)) -> str:
"""Main generation function that processes inputs and returns the path to the generated image."""
with torch.inference_mode():
# Set up CLIP
clip_switch = cr_clip_input_switch.switch(
Input=1,
clip1=get_value_at_index(CLIP_MODEL, 0),
clip2=get_value_at_index(CLIP_MODEL, 0),
)
# Encode text
text_encoded = cliptextencode.encode(
text=prompt,
clip=get_value_at_index(clip_switch, 0),
)
empty_text = cliptextencode.encode(
text="",
clip=get_value_at_index(clip_switch, 0),
)
# Process structure image
structure_img = loadimage.load_image(image=structure_image)
# Resize image
resized_img = imageresize.execute(
width=get_value_at_index(CONST_1024, 0),
height=get_value_at_index(CONST_1024, 0),
interpolation="bicubic",
method="keep proportion",
condition="always",
multiple_of=16,
image=get_value_at_index(structure_img, 0),
)
# Get image size
size_info = getimagesizeandcount.getsize(
image=get_value_at_index(resized_img, 0)
)
# Encode VAE
vae_encoded = vaeencode.encode(
pixels=get_value_at_index(size_info, 0),
vae=get_value_at_index(VAE_MODEL, 0),
)
# Process depth
depth_processed = depthanything_v2.process(
da_model=get_value_at_index(DEPTH_MODEL, 0),
images=get_value_at_index(size_info, 0),
)
# Apply Flux guidance
flux_guided = fluxguidance.append(
guidance=depth_strength,
conditioning=get_value_at_index(text_encoded, 0),
)
# Process style image
style_img = loadimage.load_image(image=style_image)
# Encode style with CLIP Vision
style_encoded = clipvisionencode.encode(
crop="center",
clip_vision=get_value_at_index(CLIP_VISION_MODEL, 0),
image=get_value_at_index(style_img, 0),
)
# Set up conditioning
conditioning = instructpixtopixconditioning.encode(
positive=get_value_at_index(flux_guided, 0),
negative=get_value_at_index(empty_text, 0),
vae=get_value_at_index(VAE_MODEL, 0),
pixels=get_value_at_index(depth_processed, 0),
)
# Apply style
style_applied = stylemodelapplyadvanced.apply_stylemodel(
strength=style_strength,
conditioning=get_value_at_index(conditioning, 0),
style_model=get_value_at_index(STYLE_MODEL, 0),
clip_vision_output=get_value_at_index(style_encoded, 0),
)
# Set up empty latent
empty_latent = emptylatentimage.generate(
width=get_value_at_index(resized_img, 1),
height=get_value_at_index(resized_img, 2),
batch_size=1,
)
# Set up guidance
guided = basicguider.get_guider(
model=get_value_at_index(UNET_MODEL, 0),
conditioning=get_value_at_index(style_applied, 0),
)
# Set up scheduler
schedule = basicscheduler.get_sigmas(
scheduler="simple",
steps=28,
denoise=1,
model=get_value_at_index(UNET_MODEL, 0),
)
# Generate random noise
noise = randomnoise.get_noise(noise_seed=random.randint(1, 2**64))
# Sample
sampled = samplercustomadvanced.sample(
noise=get_value_at_index(noise, 0),
guider=get_value_at_index(guided, 0),
sampler=get_value_at_index(SAMPLER, 0),
sigmas=get_value_at_index(schedule, 0),
latent_image=get_value_at_index(empty_latent, 0),
)
# Decode VAE
decoded = vaedecode.decode(
samples=get_value_at_index(sampled, 0),
vae=get_value_at_index(VAE_MODEL, 0),
)
# Save image
prefix = cr_text.text_multiline(text="Flux_BFL_Depth_Redux")
saved = saveimage.save_images(
filename_prefix=get_value_at_index(prefix, 0),
images=get_value_at_index(decoded, 0),
)
saved_path = f"output/{saved['ui']['images'][0]['filename']}"
print(saved_path)
return saved_path
# Create Gradio interface
with gr.Blocks() as app:
gr.Markdown("# Image Generation with Style Transfer")
with gr.Row():
with gr.Column():
prompt_input = gr.Textbox(label="Prompt", placeholder="Enter your prompt here...")
with gr.Row():
with gr.Group():
structure_image = gr.Image(label="Structure Image", type="filepath")
depth_strength = gr.Slider(minimum=0, maximum=50, value=15, label="Depth Strength")
with gr.Group():
style_image = gr.Image(label="Style Image", type="filepath")
style_strength = gr.Slider(minimum=0, maximum=1, value=0.5, label="Style Strength")
generate_btn = gr.Button("Generate")
with gr.Column():
output_image = gr.Image(label="Generated Image")
generate_btn.click(
fn=generate_image,
inputs=[prompt_input, structure_image, depth_strength, style_image, style_strength],
outputs=[output_image]
)
if __name__ == "__main__":
app.launch(share=True) |