File size: 9,088 Bytes
a166479
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
# Copyright (c) Facebook, Inc. and its affiliates.
# Modified by Bowen Cheng from https://github.com/facebookresearch/detr/blob/master/util/misc.py
"""
Misc functions, including distributed helpers.

Mostly copy-paste from torchvision references.
"""
from typing import List, Optional
from collections import OrderedDict
from scipy.io import loadmat
import numpy as np
import csv
from PIL import Image
import matplotlib.pyplot as plt
import torch
import torch.distributed as dist
import torchvision
from torch import Tensor


def _max_by_axis(the_list):
    # type: (List[List[int]]) -> List[int]
    maxes = the_list[0]
    for sublist in the_list[1:]:
        for index, item in enumerate(sublist):
            maxes[index] = max(maxes[index], item)
    return maxes

def get_world_size() -> int:
    if not dist.is_available():
        return 1
    if not dist.is_initialized():
        return 1
    return dist.get_world_size()

def reduce_dict(input_dict, average=True):
    """
    Args:
        input_dict (dict): all the values will be reduced
        average (bool): whether to do average or sum
    Reduce the values in the dictionary from all processes so that all processes
    have the averaged results. Returns a dict with the same fields as
    input_dict, after reduction.
    """
    world_size = get_world_size()
    if world_size < 2:
        return input_dict
    with torch.no_grad():
        names = []
        values = []
        # sort the keys so that they are consistent across processes
        for k in sorted(input_dict.keys()):
            names.append(k)
            values.append(input_dict[k])
        values = torch.stack(values, dim=0)
        dist.all_reduce(values)
        if average:
            values /= world_size
        reduced_dict = {k: v for k, v in zip(names, values)}
    return reduced_dict

class NestedTensor(object):
    def __init__(self, tensors, mask: Optional[Tensor]):
        self.tensors = tensors
        self.mask = mask

    def to(self, device):
        # type: (Device) -> NestedTensor # noqa
        cast_tensor = self.tensors.to(device)
        mask = self.mask
        if mask is not None:
            assert mask is not None
            cast_mask = mask.to(device)
        else:
            cast_mask = None
        return NestedTensor(cast_tensor, cast_mask)

    def decompose(self):
        return self.tensors, self.mask

    def __repr__(self):
        return str(self.tensors)

def nested_tensor_from_tensor_list(tensor_list: List[Tensor]):
    # TODO make this more general
    if tensor_list[0].ndim == 3:
        if torchvision._is_tracing():
            # nested_tensor_from_tensor_list() does not export well to ONNX
            # call _onnx_nested_tensor_from_tensor_list() instead
            return _onnx_nested_tensor_from_tensor_list(tensor_list)

        # TODO make it support different-sized images
        max_size = _max_by_axis([list(img.shape) for img in tensor_list])
        # min_size = tuple(min(s) for s in zip(*[img.shape for img in tensor_list]))
        batch_shape = [len(tensor_list)] + max_size
        b, c, h, w = batch_shape
        dtype = tensor_list[0].dtype
        device = tensor_list[0].device
        tensor = torch.zeros(batch_shape, dtype=dtype, device=device)
        mask = torch.ones((b, h, w), dtype=torch.bool, device=device)
        for img, pad_img, m in zip(tensor_list, tensor, mask):
            pad_img[: img.shape[0], : img.shape[1], : img.shape[2]].copy_(img)
            m[: img.shape[1], : img.shape[2]] = False
    else:
        raise ValueError("not supported")
    return NestedTensor(tensor, mask)

# _onnx_nested_tensor_from_tensor_list() is an implementation of
# nested_tensor_from_tensor_list() that is supported by ONNX tracing.
@torch.jit.unused
def _onnx_nested_tensor_from_tensor_list(tensor_list: List[Tensor]) -> NestedTensor:
    max_size = []
    for i in range(tensor_list[0].dim()):
        max_size_i = torch.max(
            torch.stack([img.shape[i] for img in tensor_list]).to(torch.float32)
        ).to(torch.int64)
        max_size.append(max_size_i)
    max_size = tuple(max_size)

    # work around for
    # pad_img[: img.shape[0], : img.shape[1], : img.shape[2]].copy_(img)
    # m[: img.shape[1], :img.shape[2]] = False
    # which is not yet supported in onnx
    padded_imgs = []
    padded_masks = []
    for img in tensor_list:
        padding = [(s1 - s2) for s1, s2 in zip(max_size, tuple(img.shape))]
        padded_img = torch.nn.functional.pad(img, (0, padding[2], 0, padding[1], 0, padding[0]))
        padded_imgs.append(padded_img)

        m = torch.zeros_like(img[0], dtype=torch.int, device=img.device)
        padded_mask = torch.nn.functional.pad(m, (0, padding[2], 0, padding[1]), "constant", 1)
        padded_masks.append(padded_mask.to(torch.bool))

    tensor = torch.stack(padded_imgs)
    mask = torch.stack(padded_masks)

    return NestedTensor(tensor, mask=mask)

def is_dist_avail_and_initialized():
    if not dist.is_available():
        return False
    if not dist.is_initialized():
        return False
    return True

def load_parallal_model(model, state_dict_):
    state_dict = OrderedDict()
    for key in state_dict_:
        if key.startswith('module') and not key.startswith('module_list'):
            state_dict[key[7:]] = state_dict_[key]
        else:
            state_dict[key] = state_dict_[key]

    # check loaded parameters and created model parameters
    model_state_dict = model.state_dict()
    for key in state_dict:
        if key in model_state_dict:
            if state_dict[key].shape != model_state_dict[key].shape:
                print('Skip loading parameter {}, required shape{}, loaded shape{}.'.format(
                    key, model_state_dict[key].shape, state_dict[key].shape))
                state_dict[key] = model_state_dict[key]
        else:
            print('Drop parameter {}.'.format(key))
    for key in model_state_dict:
        if key not in state_dict:
            print('No param {}.'.format(key))
            state_dict[key] = model_state_dict[key]
    model.load_state_dict(state_dict, strict=False)

    return model

class ADEVisualize(object):
    def __init__(self):
        self.colors = loadmat('dataset/color150.mat')['colors']
        self.names = {}
        with open('dataset/object150_info.csv') as f:
            reader = csv.reader(f)
            next(reader)
            for row in reader:
                self.names[int(row[0])] = row[5].split(";")[0]

    def unique(self, ar, return_index=False, return_inverse=False, return_counts=False):
        ar = np.asanyarray(ar).flatten()

        optional_indices = return_index or return_inverse
        optional_returns = optional_indices or return_counts

        if ar.size == 0:
            if not optional_returns:
                ret = ar
            else:
                ret = (ar,)
                if return_index:
                    ret += (np.empty(0, np.bool),)
                if return_inverse:
                    ret += (np.empty(0, np.bool),)
                if return_counts:
                    ret += (np.empty(0, np.intp),)
            return ret
        if optional_indices:
            perm = ar.argsort(kind='mergesort' if return_index else 'quicksort')
            aux = ar[perm]
        else:
            ar.sort()
            aux = ar
        flag = np.concatenate(([True], aux[1:] != aux[:-1]))

        if not optional_returns:
            ret = aux[flag]
        else:
            ret = (aux[flag],)
            if return_index:
                ret += (perm[flag],)
            if return_inverse:
                iflag = np.cumsum(flag) - 1
                inv_idx = np.empty(ar.shape, dtype=np.intp)
                inv_idx[perm] = iflag
                ret += (inv_idx,)
            if return_counts:
                idx = np.concatenate(np.nonzero(flag) + ([ar.size],))
                ret += (np.diff(idx),)
        return ret

    def colorEncode(self, labelmap, colors, mode='RGB'):
        labelmap = labelmap.astype('int')
        labelmap_rgb = np.zeros((labelmap.shape[0], labelmap.shape[1], 3),
                                dtype=np.uint8)
        for label in self.unique(labelmap):
            if label < 0:
                continue
            labelmap_rgb += (labelmap == label)[:, :, np.newaxis] * \
                np.tile(colors[label],
                        (labelmap.shape[0], labelmap.shape[1], 1))

        if mode == 'BGR':
            return labelmap_rgb[:, :, ::-1]
        else:
            return labelmap_rgb

    def show_result(self, img, pred, save_path=None):
        pred = np.int32(pred)
        # colorize prediction
        pred_color = self.colorEncode(pred, self.colors)        
        pil_img = img.convert('RGBA')
        pred_color = Image.fromarray(pred_color).convert('RGBA')
        im_vis = Image.blend(pil_img, pred_color, 0.6)
        if save_path is not None:
            im_vis.save(save_path)
            # Image.fromarray(im_vis).save(save_path)
        else:
            plt.imshow(im_vis)