File size: 4,995 Bytes
c2a24ff
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
import datetime
import os
import time

import torch
import torch.utils.data
from torch import nn

from bert.modeling_bert import BertModel
import torchvision

from lib import segmentation
import transforms as T
import utils

import numpy as np
from PIL import Image
import torch.nn.functional as F


def get_dataset(image_set, transform, args):
    from data.dataset_refer_bert import ReferDataset
    ds = ReferDataset(args,
                      split=image_set,
                      image_transforms=transform,
                      target_transforms=None,
                      eval_mode=True
                      )
    num_classes = 2
    return ds, num_classes


def evaluate(model, data_loader, bert_model, device):
    model.eval()
    metric_logger = utils.MetricLogger(delimiter="  ")

    # evaluation variables
    cum_I, cum_U = 0, 0
    eval_seg_iou_list = [.5, .6, .7, .8, .9]
    seg_correct = np.zeros(len(eval_seg_iou_list), dtype=np.int32)
    seg_total = 0
    mean_IoU = []
    header = 'Test:'

    with torch.no_grad():
        for data in metric_logger.log_every(data_loader, 100, header):
            image, target, sentences, attentions = data
            image, target, sentences, attentions = image.to(device), target.to(device), \
                                                   sentences.to(device), attentions.to(device)
            sentences = sentences.squeeze(1)
            attentions = attentions.squeeze(1)
            target = target.cpu().data.numpy()
            for j in range(sentences.size(-1)):
                if bert_model is not None:
                    last_hidden_states = bert_model(sentences[:, :, j], attention_mask=attentions[:, :, j])[0]
                    embedding = last_hidden_states.permute(0, 2, 1)
                    output = model(image, embedding, l_mask=attentions[:, :, j].unsqueeze(-1))
                else:
                    output = model(image, sentences[:, :, j], l_mask=attentions[:, :, j])

                output = output.cpu()
                output_mask = output.argmax(1).data.numpy()
                I, U = computeIoU(output_mask, target)
                if U == 0:
                    this_iou = 0.0
                else:
                    this_iou = I*1.0/U
                mean_IoU.append(this_iou)
                cum_I += I
                cum_U += U
                for n_eval_iou in range(len(eval_seg_iou_list)):
                    eval_seg_iou = eval_seg_iou_list[n_eval_iou]
                    seg_correct[n_eval_iou] += (this_iou >= eval_seg_iou)
                seg_total += 1

            del image, target, sentences, attentions, output, output_mask
            if bert_model is not None:
                del last_hidden_states, embedding

    mean_IoU = np.array(mean_IoU)
    mIoU = np.mean(mean_IoU)
    print('Final results:')
    print('Mean IoU is %.2f\n' % (mIoU*100.))
    results_str = ''
    for n_eval_iou in range(len(eval_seg_iou_list)):
        results_str += '    precision@%s = %.2f\n' % \
                       (str(eval_seg_iou_list[n_eval_iou]), seg_correct[n_eval_iou] * 100. / seg_total)
    results_str += '    overall IoU = %.2f\n' % (cum_I * 100. / cum_U)
    print(results_str)


def get_transform(args):
    transforms = [T.Resize(args.img_size, args.img_size),
                  T.ToTensor(),
                  T.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
                  ]

    return T.Compose(transforms)


def computeIoU(pred_seg, gd_seg):
    I = np.sum(np.logical_and(pred_seg, gd_seg))
    U = np.sum(np.logical_or(pred_seg, gd_seg))

    return I, U


def main(args):
    device = torch.device(args.device)
    dataset_test, _ = get_dataset(args.split, get_transform(args=args), args)
    test_sampler = torch.utils.data.SequentialSampler(dataset_test)
    data_loader_test = torch.utils.data.DataLoader(dataset_test, batch_size=1,
                                                   sampler=test_sampler, num_workers=args.workers)
    print(args.model)
    single_model = segmentation.__dict__[args.model](pretrained='',args=args)
    checkpoint = torch.load(args.resume, map_location='cpu')
    single_model.load_state_dict(checkpoint['model'])
    model = single_model.to(device)

    if args.model != 'lavt_one':
        model_class = BertModel
        single_bert_model = model_class.from_pretrained(args.ck_bert)
        # work-around for a transformers bug; need to update to a newer version of transformers to remove these two lines
        if args.ddp_trained_weights:
            single_bert_model.pooler = None
        single_bert_model.load_state_dict(checkpoint['bert_model'])
        bert_model = single_bert_model.to(device)
    else:
        bert_model = None

    evaluate(model, data_loader_test, bert_model, device=device)


if __name__ == "__main__":
    from args import get_parser
    parser = get_parser()
    args = parser.parse_args()
    print('Image size: {}'.format(str(args.img_size)))
    main(args)