File size: 11,353 Bytes
6bcc48d
c2a24ff
1331a7f
c2a24ff
b07ca48
09d8494
46907a9
 
 
09d8494
46907a9
09d8494
b07ca48
46907a9
c2a24ff
 
b07ca48
c2a24ff
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4f646a4
c2a24ff
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

import gradio as gr
import subprocess

import os
print("A")
#os.system("curl --proto '=https' --tlsv1.2 -sSf https://sh.rustup.rs > install.sh")
#os.system("sh install.sh -y")
#os.system('export PATH="$HOME/.cargo/bin:$PATH"')
print("B")
#os.system('pip install tokenizers==0.8.1rc1')
print("C")

os.system('wget https://huggingface.co/yxchng/elia_refcoco/resolve/main/model_best_refcoco_0508.pth')
image_path = './image001.png'
sentence = 'spoon on the dish'
weights = 'model_best_refcoco_0508.pth'
device = 'cpu'

# pre-process the input image
from PIL import Image
import torchvision.transforms as T
import numpy as np
import datetime
import os
import time

import torch
import torch.utils.data
from torch import nn

from bert.multimodal_bert import MultiModalBert
import torchvision

from lib import multimodal_segmentation_ppm
#import transforms as T
import utils

import numpy as np
from PIL import Image
import torch.nn.functional as F

from modeling.MaskFormerModel import MaskFormerHead
from addict import Dict
#from bert.modeling_bert import BertLMPredictionHead, BertEncoder
import cv2
import textwrap

class WrapperModel(nn.Module):
    def __init__(self, image_model, language_model, classifier) :
        super(WrapperModel, self).__init__()
        self.image_model = image_model
        self.language_model = language_model
        self.classifier = classifier

        config = Dict({
          "architectures": [
           "BertForMaskedLM"
          ],
          "attention_probs_dropout_prob": 0.1,
          "gradient_checkpointing": False,
          "hidden_act": "gelu",
          "hidden_dropout_prob": 0.1,
          "hidden_size": 512,
          "initializer_range": 0.02,
          "intermediate_size": 3072,
          "layer_norm_eps": 1e-12,
          #"max_position_embeddings": 16+20,
          "model_type": "bert",
          "num_attention_heads": 8,
          "num_hidden_layers": 8,
         "pad_token_id": 0,
          "position_embedding_type": "absolute",
          "transformers_version": "4.6.0.dev0",
          "type_vocab_size": 2,
          "use_cache": True,
          "vocab_size": 30522
        })



    def _get_binary_mask(self, target):
        # 返回每类的binary mask
        y, x = target.size()
        target_onehot = torch.zeros(self.num_classes + 1, y, x)
        target_onehot = target_onehot.scatter(dim=0, index=target.unsqueeze(0), value=1)
        return target_onehot[1:]

    def semantic_inference(self, mask_cls, mask_pred):       
        mask_cls = F.softmax(mask_cls, dim=1)[...,1:]
        mask_pred = mask_pred.sigmoid()      
        semseg = torch.einsum("bqc,bqhw->bchw", mask_cls, mask_pred)        
        return semseg

    def forward(self, image, sentences, attentions): 
        print(image.sum(), sentences.sum(), attentions.sum())
        input_shape = image.shape[-2:]
        l_mask = attentions.unsqueeze(dim=-1)

        i0, Wh, Ww = self.image_model.forward_stem(image)
        l0, extended_attention_mask = self.language_model.forward_stem(sentences, attentions)

        i1 = self.image_model.forward_stage1(i0, Wh, Ww)
        l1 = self.language_model.forward_stage1(l0, extended_attention_mask)
        i1_residual, H, W, i1_temp, Wh, Ww  = self.image_model.forward_pwam1(i1, Wh, Ww, l1, l_mask)
        l1_residual, l1 = self.language_model.forward_pwam1(i1, l1, extended_attention_mask) 
        i1 = i1_temp

        i2 = self.image_model.forward_stage2(i1, Wh, Ww)
        l2 = self.language_model.forward_stage2(l1, extended_attention_mask)
        i2_residual, H, W, i2_temp, Wh, Ww  = self.image_model.forward_pwam2(i2, Wh, Ww, l2, l_mask)
        l2_residual, l2 = self.language_model.forward_pwam2(i2, l2, extended_attention_mask) 
        i2 = i2_temp

        i3 = self.image_model.forward_stage3(i2, Wh, Ww)
        l3 = self.language_model.forward_stage3(l2, extended_attention_mask)
        i3_residual, H, W, i3_temp, Wh, Ww  = self.image_model.forward_pwam3(i3, Wh, Ww, l3, l_mask)
        l3_residual, l3 = self.language_model.forward_pwam3(i3, l3, extended_attention_mask) 
        i3 = i3_temp

        i4 = self.image_model.forward_stage4(i3, Wh, Ww)
        l4 = self.language_model.forward_stage4(l3, extended_attention_mask)
        i4_residual, H, W, i4_temp, Wh, Ww  = self.image_model.forward_pwam4(i4, Wh, Ww, l4, l_mask)
        l4_residual, l4 = self.language_model.forward_pwam4(i4, l4, extended_attention_mask) 
        i4 = i4_temp

        #i1_residual, i2_residual, i3_residual, i4_residual = features
        #x = self.classifier(i4_residual, i3_residual, i2_residual, i1_residual)
        #x = F.interpolate(x, size=input_shape, mode='bilinear', align_corners=True)
        outputs = {}
        outputs['s1'] = i1_residual
        outputs['s2'] = i2_residual
        outputs['s3'] = i3_residual
        outputs['s4'] = i4_residual

        predictions = self.classifier(outputs)
        return predictions

#img = Image.open(image_path).convert("RGB")

# pre-process the raw sentence
from bert.tokenization_bert import BertTokenizer
import torch

# initialize model and load weights
#from bert.modeling_bert import BertModel
#from lib import segmentation

# construct a mini args class; like from a config file


class args:
    swin_type = 'base'
    window12 = True
    mha = ''
    fusion_drop = 0.0


#single_model = segmentation.__dict__['lavt'](pretrained='', args=args)
single_model = multimodal_segmentation_ppm.__dict__['lavt'](pretrained='',args=args)
single_model.to(device)
model_class = MultiModalBert
single_bert_model = model_class.from_pretrained('bert-base-uncased', embed_dim=single_model.backbone.embed_dim)
single_bert_model.pooler = None

input_shape = dict()
input_shape['s1'] = Dict({'channel': 128,  'stride': 4})
input_shape['s2'] = Dict({'channel': 256,  'stride': 8})
input_shape['s3'] = Dict({'channel': 512,  'stride': 16})
input_shape['s4'] = Dict({'channel': 1024, 'stride': 32})



cfg = Dict()
cfg.MODEL.SEM_SEG_HEAD.COMMON_STRIDE = 4
cfg.MODEL.MASK_FORMER.DROPOUT = 0.0 
cfg.MODEL.MASK_FORMER.NHEADS = 8
cfg.MODEL.SEM_SEG_HEAD.TRANSFORMER_ENC_LAYERS = 4
cfg.MODEL.SEM_SEG_HEAD.CONVS_DIM = 256
cfg.MODEL.SEM_SEG_HEAD.MASK_DIM = 256
cfg.MODEL.SEM_SEG_HEAD.DEFORMABLE_TRANSFORMER_ENCODER_IN_FEATURES = ["s1", "s2", "s3", "s4"]

cfg.MODEL.SEM_SEG_HEAD.NUM_CLASSES = 1
cfg.MODEL.MASK_FORMER.HIDDEN_DIM = 256
cfg.MODEL.MASK_FORMER.NUM_OBJECT_QUERIES = 1
cfg.MODEL.MASK_FORMER.DIM_FEEDFORWARD = 2048
cfg.MODEL.MASK_FORMER.DEC_LAYERS = 10
cfg.MODEL.MASK_FORMER.PRE_NORM = False


maskformer_head = MaskFormerHead(cfg, input_shape)


model = WrapperModel(single_model.backbone, single_bert_model, maskformer_head)



checkpoint = torch.load(weights, map_location='cpu')

model.load_state_dict(checkpoint['model'], strict=False)
model.to(device)
model.eval()
#single_bert_model.load_state_dict(checkpoint['bert_model'])
#single_model.load_state_dict(checkpoint['model'])
#model = single_model.to(device)
#bert_model = single_bert_model.to(device)


# inference
#import torch.nn.functional as F
#last_hidden_states = bert_model(padded_sent_toks, attention_mask=attention_mask)[0]
#embedding = last_hidden_states.permute(0, 2, 1)
#output = model(img, embedding, l_mask=attention_mask.unsqueeze(-1))
#output = output.argmax(1, keepdim=True)  # (1, 1, 480, 480)
#output = F.interpolate(output.float(), (original_h, original_w))  # 'nearest'; resize to the original image size
#output = output.squeeze()  # (orig_h, orig_w)
#output = output.cpu().data.numpy()  # (orig_h, orig_w)

#output = pred_masks[0]

#output = output.cpu()



#print(output.shape)
#output_mask = output.argmax(1).data.numpy()
#output = (output > 0.5).data.cpu().numpy()


# show/save results
def overlay_davis(image, mask, colors=[[0, 0, 0], [255, 0, 0]], cscale=1, alpha=0.4):
    from scipy.ndimage.morphology import binary_dilation

    colors = np.reshape(colors, (-1, 3))
    colors = np.atleast_2d(colors) * cscale

    im_overlay = image.copy()
    object_ids = np.unique(mask)

    for object_id in object_ids[1:]:
        # Overlay color on  binary mask
        foreground = image*alpha + np.ones(image.shape)*(1-alpha) * np.array(colors[object_id])
        binary_mask = mask == object_id

        # Compose image
        im_overlay[binary_mask] = foreground[binary_mask]

        # countours = skimage.morphology.binary.binary_dilation(binary_mask) - binary_mask
        countours = binary_dilation(binary_mask) ^ binary_mask
        # countours = cv2.dilate(binary_mask, cv2.getStructuringElement(cv2.MORPH_CROSS,(3,3))) - binary_mask
        im_overlay[countours, :] = 0

    return im_overlay.astype(image.dtype)


def run_model(img, sentence):

#img = Image.open(image_path).convert("RGB")
    img = Image.fromarray(img)
    img = img.convert("RGB")
    #print(img.shape)
    img_ndarray = np.array(img)  # (orig_h, orig_w, 3); for visualization
    original_w, original_h = img.size  # PIL .size returns width first and height second

    image_transforms = T.Compose(
        [
         T.Resize((480, 480)),
         T.ToTensor(),
         T.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
        ]
    )

    img = image_transforms(img).unsqueeze(0)  # (1, 3, 480, 480)
    img = img.to(device)  # for inference (input)

    tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
    sentence_tokenized = tokenizer.encode(text=sentence, add_special_tokens=True)
    sentence_tokenized = sentence_tokenized[:20]  # if the sentence is longer than 20, then this truncates it to 20 words
    # pad the tokenized sentence
    padded_sent_toks = [0] * 20
    padded_sent_toks[:len(sentence_tokenized)] = sentence_tokenized
    # create a sentence token mask: 1 for real words; 0 for padded tokens
    attention_mask = [0] * 20
    attention_mask[:len(sentence_tokenized)] = [1]*len(sentence_tokenized)
    # convert lists to tensors
    padded_sent_toks = torch.tensor(padded_sent_toks).unsqueeze(0)  # (1, 20)
    attention_mask = torch.tensor(attention_mask).unsqueeze(0)  # (1, 20)
    padded_sent_toks = padded_sent_toks.to(device)  # for inference (input)
    attention_mask = attention_mask.to(device)  # for inference (input)

    output = model(img, padded_sent_toks, attention_mask)[0]
    #print(output[0].keys())
    #print(output[1].shape)
    mask_cls_results = output["pred_logits"]
    mask_pred_results = output["pred_masks"]

    target_shape = img_ndarray.shape[:2]
    #print(target_shape, mask_pred_results.shape)
    mask_pred_results = F.interpolate(mask_pred_results, size=(480,480), mode='bilinear', align_corners=True)

    pred_masks = model.semantic_inference(mask_cls_results, mask_pred_results)                

    output = torch.nn.functional.interpolate(pred_masks, target_shape)
    output = (output > 0.5).data.cpu().numpy()

    output = output.astype(np.uint8)  # (orig_h, orig_w), np.uint8
    # Overlay the mask on the image
    print(img_ndarray.shape, output.shape)
    visualization = overlay_davis(img_ndarray, output[0][0])  # red
    visualization = Image.fromarray(visualization)
    # show the visualization
    #visualization.show()
    # Save the visualization
    #visualization.save('./demo/spoon_on_the_dish.jpg')
    return visualization




demo = gr.Interface(run_model, inputs=[gr.Image(), "text"], outputs=["image"])
demo.launch()