File size: 11,341 Bytes
03f6091
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
# -*- coding: utf-8 -*-
r"""
Polos Ranker Model
======================
    The goal of this model is to rank good translations closer to the reference and source text
    and bad translations further by a small margin.

    https://pytorch.org/docs/stable/nn.html#tripletmarginloss
"""
from argparse import Namespace
from typing import Dict, List, Tuple, Union

import torch
import torch.nn.functional as F
from tqdm import tqdm

from polos.models.ranking.ranking_base import RankingBase
from polos.models.utils import move_to_cuda
from torchnlp.utils import collate_tensors


class PolosRanker(RankingBase): # extends ptl.LightningModule
    """
    Polos Ranker class that uses a pretrained encoder to extract features
    from the sequences and then passes those features through a Triplet Margin Loss.

    :param hparams: Namespace containing the hyperparameters.
    """

    def __init__(self, hparams: Namespace) -> None:
        super().__init__(hparams)

    def compute_metrics(self, outputs: List[Dict[str, torch.Tensor]]) -> dict:
        """  Computes WMT19 shared task kendall tau like metric. """
        distance_pos, distance_neg = [], []
        for minibatch in outputs:
            minibatch = minibatch["val_prediction"]
            src_embedding = minibatch["src_sentemb"]
            ref_embedding = minibatch["ref_sentemb"]
            pos_embedding = minibatch["pos_sentemb"]
            neg_embedding = minibatch["neg_sentemb"]

            distance_src_pos = F.pairwise_distance(pos_embedding, src_embedding)
            distance_ref_pos = F.pairwise_distance(pos_embedding, ref_embedding)
            harmonic_distance_pos = (2 * distance_src_pos * distance_ref_pos) / (
                distance_src_pos + distance_ref_pos
            )
            distance_pos.append(harmonic_distance_pos)

            distance_src_neg = F.pairwise_distance(neg_embedding, src_embedding)
            distance_ref_neg = F.pairwise_distance(neg_embedding, ref_embedding)
            harmonic_distance_neg = (2 * distance_src_neg * distance_ref_neg) / (
                distance_src_neg + distance_ref_neg
            )
            distance_neg.append(harmonic_distance_neg)

        return {
            "kendall": self.metrics.compute(
                torch.cat(distance_pos), torch.cat(distance_neg)
            )
        }

    def compute_loss(self, model_out: Dict[str, torch.Tensor], *args) -> torch.Tensor: 
        """
        # forwardの結果がmodel_outに入っているのでlossを計算
        Computes Triplet Margin Loss for both the reference and the source.

        :param model_out: model specific output with src_anchor, ref_anchor, pos and neg
            sentence embeddings.
        """

        # 参考
        #     "src_sentemb": self.get_sentence_embedding(src_tokens, src_lengths),
        #     "ref_sentemb": self.get_sentence_embedding(ref_tokens, ref_lengths),
        #     "pos_sentemb": self.get_sentence_embedding(pos_tokens, pos_lengths),
        #     "neg_sentemb": self.get_sentence_embedding(neg_tokens, neg_lengths),
        
        ref_anchor = model_out["ref_sentemb"]
        src_anchor = model_out["src_sentemb"]
        positive = model_out["pos_sentemb"]
        negative = model_out["neg_sentemb"]

        return self.loss(src_anchor, positive, negative) + self.loss(
            ref_anchor, positive, negative
        )

    def predict(
        self,
        samples: Dict[str, str],
        cuda: bool = False,
        show_progress: bool = False,
        batch_size: int = -1,
    ) -> (Dict[str, Union[str, float]], List[float]):
        """Function that runs a model prediction,

        :param samples: List of dictionaries with 'mt' and 'ref' keys.
        :param cuda: Flag that runs inference using 1 single GPU.
        :param show_progress: Flag to show progress during inference of multiple examples.
        :para batch_size: Batch size used during inference. By default uses the same batch size used during training.

        :return: Dictionary with model outputs
        """
        if self.training:
            self.eval()

        if cuda and torch.cuda.is_available():
            self.to("cuda")

        batch_size = self.hparams.batch_size if batch_size < 1 else batch_size
        with torch.no_grad():
            batches = [
                samples[i : i + batch_size] for i in range(0, len(samples), batch_size)
            ]
            model_inputs = []
            if show_progress:
                pbar = tqdm(
                    total=len(batches), desc="Preparing batches....", dynamic_ncols=True
                )
            for batch in batches:
                model_inputs.append(self.prepare_sample(batch, inference=True))
                if show_progress:
                    pbar.update(1)

            if show_progress:
                pbar.close()

            if show_progress:
                pbar = tqdm(
                    total=len(batches), desc="Scoring hypothesis...", dynamic_ncols=True
                )

            distance_weighted, distance_src, distance_ref = [], [], []
            for k, model_input in enumerate(model_inputs):
                src_input, mt_input, ref_input, alt_input = model_input
                if cuda and torch.cuda.is_available():
                    src_embeddings = self.get_sentence_embedding(
                        **move_to_cuda(src_input)
                    )
                    mt_embeddings = self.get_sentence_embedding(
                        **move_to_cuda(mt_input)
                    )
                    ref_embeddings = self.get_sentence_embedding(
                        **move_to_cuda(ref_input)
                    )
                    ref_distances = F.pairwise_distance(
                        mt_embeddings, ref_embeddings
                    ).cpu()
                    src_distances = F.pairwise_distance(
                        mt_embeddings, src_embeddings
                    ).cpu()

                    # When 2 references are given the distance to the reference is the Min between
                    # both references.
                    if alt_input is not None:
                        alt_embeddings = self.get_sentence_embedding(
                            **move_to_cuda(alt_input)
                        )
                        alt_distances = F.pairwise_distance(
                            mt_embeddings, alt_embeddings
                        ).cpu()
                        ref_distances = torch.stack([ref_distances, alt_distances])
                        ref_distances = ref_distances.min(dim=0).values

                else:
                    src_embeddings = self.get_sentence_embedding(**src_input)
                    mt_embeddings = self.get_sentence_embedding(**mt_input)
                    ref_embeddings = self.get_sentence_embedding(**ref_input)
                    ref_distances = F.pairwise_distance(mt_embeddings, ref_embeddings)
                    src_distances = F.pairwise_distance(mt_embeddings, src_embeddings)

                # Harmonic mean between the distances:
                distances = (2 * ref_distances * src_distances) / (
                    ref_distances + src_distances
                )
                src_distances = ref_distances.numpy().tolist()
                ref_distances = ref_distances.numpy().tolist()
                distances = distances.numpy().tolist()

                for i in range(len(distances)):
                    distance_weighted.append(1 / (1 + distances[i]))
                    distance_src.append(1 / (1 + src_distances[i]))
                    distance_ref.append(1 / (1 + ref_distances[i]))

                if show_progress:
                    pbar.update(1)

            if show_progress:
                pbar.close()

        assert len(distance_weighted) == len(samples)
        scores = []
        for i in range(len(samples)):
            scores.append(distance_weighted[i])
            samples[i]["predicted_score"] = scores[-1]
            samples[i]["reference_distance"] = distance_ref[i]
            samples[i]["source_distance"] = distance_src[i]

        return samples, scores

    def prepare_sample(
        self, sample: List[Dict[str, Union[str, float]]], inference: bool = False
    ) -> Union[Tuple[Dict[str, torch.Tensor], None], List[Dict[str, torch.Tensor]]]:
        """
        Function that prepares a sample to input the model.

        :param sample: list of dictionaries.
        :param inference: If set to to False, then the model expects
            a MT and reference instead of anchor, pos, and neg segments.

        :return: Tuple with a dictionary containing the model inputs and None OR List
            with source, MT and reference tokenized and vectorized.
        """
        sample = collate_tensors(sample)
        if inference:
            src_inputs = self.encoder.prepare_sample(sample["src"])
            mt_inputs = self.encoder.prepare_sample(sample["mt"])
            ref_inputs = self.encoder.prepare_sample(sample["ref"])
            alt_inputs = (
                self.encoder.prepare_sample(sample["alt"]) if "alt" in sample else None
            )
            return src_inputs, mt_inputs, ref_inputs, alt_inputs

        ref_inputs = self.encoder.prepare_sample(sample["ref"])
        src_inputs = self.encoder.prepare_sample(sample["src"])
        pos_inputs = self.encoder.prepare_sample(sample["pos"])
        neg_inputs = self.encoder.prepare_sample(sample["neg"])

        ref_inputs = {"ref_" + k: v for k, v in ref_inputs.items()}
        src_inputs = {"src_" + k: v for k, v in src_inputs.items()}
        pos_inputs = {"pos_" + k: v for k, v in pos_inputs.items()}
        neg_inputs = {"neg_" + k: v for k, v in neg_inputs.items()}

        return {**ref_inputs, **src_inputs, **pos_inputs, **neg_inputs}, torch.empty(0)

    def forward(
        self,
        src_tokens: torch.tensor,
        ref_tokens: torch.tensor,
        pos_tokens: torch.tensor,
        neg_tokens: torch.tensor,
        src_lengths: torch.tensor,
        ref_lengths: torch.tensor,
        pos_lengths: torch.tensor,
        neg_lengths: torch.tensor,
        **kwargs
    ) -> Dict[str, torch.Tensor]:
        """
        Function that encodes the anchor, positive samples and negative samples
        and returns embeddings for the triplet.

        :param src_tokens: anchor sequences [batch_size x anchor_seq_len]
        :param ref_tokens: anchor sequences [batch_size x anchor_seq_len]
        :param pos_tokens: positive sequences [batch_size x pos_seq_len]
        :param neg_tokens: negative sequences [batch_size x neg_seq_len]
        :param src_lengths: anchor lengths [batch_size]
        :param ref_lengths: anchor lengths [batch_size]
        :param pos_lengths: positive lengths [batch_size]
        :param neg_lengths: negative lengths [batch_size]

        :return: Dictionary with model outputs to be passed to the loss function.
        """
        return {
            "src_sentemb": self.get_sentence_embedding(src_tokens, src_lengths),
            "ref_sentemb": self.get_sentence_embedding(ref_tokens, ref_lengths),
            "pos_sentemb": self.get_sentence_embedding(pos_tokens, pos_lengths),
            "neg_sentemb": self.get_sentence_embedding(neg_tokens, neg_lengths),
        }