File size: 8,288 Bytes
03f6091
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
# -*- coding: utf-8 -*-
import random
from argparse import Namespace
from typing import Dict, List, Tuple, Union

import torch

from polos.models.estimators.estimator_base import Estimator
from polos.modules.feedforward import FeedForward
from polos.modules.scalar_mix import ScalarMixWithDropout
from torchnlp.utils import collate_tensors
import polos.clip as clip
import torch

from typing import List, Union

try:
    import warnings
    from shapely.errors import ShapelyDeprecationWarning
    warnings.filterwarnings("ignore", category=ShapelyDeprecationWarning)
except:
    pass

class PolosEstimator(Estimator):
    """
    Estimator class that uses a pretrained encoder to extract features from
    the sequences and then passes those features to a feed forward estimator.

    :param hparams: Namespace containing the hyperparameters.
    """

    class ModelConfig(Estimator.ModelConfig):
        switch_prob: float = 0.0

    def __init__(
        self,
        hparams: Namespace,
    ) -> None:
        super().__init__(hparams)

    def _build_model(self) -> Estimator:
        """
        Initializes the estimator architecture.
        """
        super()._build_model()

        if self.hparams.encoder_model != "LASER":
            self.layer = (
                int(self.hparams.layer)
                if self.hparams.layer != "mix"
                else self.hparams.layer
            )

            self.scalar_mix = (
                ScalarMixWithDropout(
                    mixture_size=self.encoder.num_layers,
                    dropout=self.hparams.scalar_mix_dropout,
                    do_layer_norm=True,
                )
                if self.layer == "mix" and self.hparams.pool != "default"
                else None
            )

        parallel_feature_extraction = True
        if parallel_feature_extraction:
            input_emb_sz = (
                self.encoder.output_units * 4 + 512*6
                if self.hparams.pool != "cls+avg"
                else self.encoder.output_units * 2 * 8
            )
        else:
            input_emb_sz = (
                self.encoder.output_units * 2 + 512*3
                if self.hparams.pool != "cls+avg"
                else self.encoder.output_units * 2 * 8
            )

        self.ff = torch.nn.Sequential(*[
            FeedForward(
                in_dim=input_emb_sz,
                # out_dim=input_emb_sz,
                hidden_sizes=self.hparams.hidden_sizes,
                activations=self.hparams.activations,
                dropout=self.hparams.dropout,
                final_activation=(
                    self.hparams.final_activation
                    if hasattr(
                        self.hparams, "final_activation"
                    )  # compatability with older checkpoints!
                    else "Sigmoid"
                ),
            ),
            torch.nn.Sigmoid()
        ])

        self.clip, self.clip_preprocess = clip.load("ViT-B/32", device="cpu")
        self.parallel_feature_extraction = parallel_feature_extraction


    def configure_optimizers(
        self,
    ) -> Tuple[List[torch.optim.Optimizer], List[torch.optim.lr_scheduler.LambdaLR]]:
        """ Sets different Learning rates for different parameter groups. """
        layer_parameters = self.encoder.layerwise_lr(
            self.hparams.encoder_learning_rate, self.hparams.layerwise_decay
        )
        ff_parameters = [
            {"params": self.ff.parameters(), "lr": self.hparams.learning_rate}
        ]

        if self.hparams.encoder_model != "LASER" and self.scalar_mix:
            scalar_mix_parameters = [
                {
                    "params": self.scalar_mix.parameters(),
                    "lr": self.hparams.learning_rate,
                }
            ]

            optimizer = self._build_optimizer(
                layer_parameters + ff_parameters + scalar_mix_parameters
            )
        else:
            optimizer = self._build_optimizer(layer_parameters + ff_parameters)
        scheduler = self._build_scheduler(optimizer)
        return [optimizer], [scheduler]

    def prepare_sample(
        self, sample: List[Dict[str, Union[str, float]]], inference: bool = False
    ) -> Union[
        Tuple[Dict[str, torch.Tensor], Dict[str, torch.Tensor]], Dict[str, torch.Tensor]
    ]:
        """
        Function that prepares a sample to input the model.

        :param sample: list of dictionaries.
        :param inference: If set to true prepares only the model inputs.

        :returns: Tuple with 2 dictionaries (model inputs and targets).
            If `inference=True` returns only the model inputs.
        """
        sample = collate_tensors(sample)
        mt_inputs = self.encoder.prepare_sample(sample["mt"])
        ref_inputs = [self.encoder.prepare_sample(ref) for ref in sample["refs"]]
        
        inputs = {
            "mt_inputs": mt_inputs,
            "ref_inputs": ref_inputs,
            "refs": sample["refs"],
            "mt": sample["mt"],
            "imgs": sample["img"]
        }

        if inference:
            return inputs

        targets = {"score": torch.tensor(sample["score"], dtype=torch.float)}
        return inputs, targets

    def masked_global_average_pooling(self, input_tensor, mask):
        mask = mask.logical_not() # mask[x] = input[x] is not pad
        mask_expanded = mask.unsqueeze(-1).expand_as(input_tensor).float()
        input_tensor_masked = input_tensor * mask_expanded
        num_elements = mask.sum(dim=1,keepdim=True).float() # TODO: チェック
        output_tensor = input_tensor_masked.sum(dim=1) / num_elements
        return output_tensor

    def forward(
        self,
        refs,
        mt,
        ref_inputs,
        mt_inputs,
        imgs: torch.tensor,
        alt_tokens: torch.tensor = None,
        alt_lengths: torch.tensor = None,
        **kwargs
    ) -> Dict[str, torch.Tensor]:
        
        mt_tokens, mt_lengths = mt_inputs["tokens"], mt_inputs["lengths"]
        mt_sentemb, mt_sentembs, mt_mask, padding_index = self.get_sentence_embedding(mt_tokens, mt_lengths,pooling=False)
        mt_mask = mt_mask.logical_not()

        ref_sentemb_list = []
        ref_sentembs_list = []
        ref_mask_list = []
        for ref in ref_inputs:
            ref_tokens, ref_lengths = ref["tokens"], ref["lengths"]
            ref_sentemb, ref_sentembs, ref_mask, _ = self.get_sentence_embedding(ref_tokens, ref_lengths,pooling=False)
            ref_mask = ref_mask.logical_not()
            ref_sentemb_list.append(ref_sentemb)
            ref_sentembs_list.append(ref_sentembs)
            ref_mask_list.append(ref_mask)


        refs_clip = []
        for ref_list in refs: # (ref_cnt, B, L)
            subset = [clip.tokenize("A photo depicts " + ref,truncate=True).to(self.device) for ref in ref_list]
            subset = torch.cat(subset,dim=0)
            refs_tensor = self.clip.encode_text(subset)
            refs_clip.append(refs_tensor) 
        
        mts_clip = clip.tokenize(["A photo depicts " + x for x in mt],truncate=True).to(self.device)
        imgs_clip = torch.cat([self.clip_preprocess(img).unsqueeze(0) for img in imgs],dim=0).to(self.device)

        imgs_clip = self.clip.encode_image(imgs_clip)
        mts_clip = self.clip.encode_text(mts_clip)
        del imgs

        scores = []
        for ref_sentemb, ref_clip in zip(ref_sentemb_list,refs_clip):
            diff = torch.abs(mt_sentemb - ref_sentemb)
            mul = mt_sentemb * ref_sentemb
            diff_clip = torch.abs(imgs_clip - mts_clip)
            mul_clip = imgs_clip * mts_clip
            diff_clip_txt = torch.abs(ref_clip - mts_clip)
            mul_clip_txt = ref_clip * mts_clip
            if self.parallel_feature_extraction:
                x = torch.cat(
                    (ref_sentemb,mt_sentemb,diff,mul,imgs_clip,mts_clip,diff_clip,mul_clip,diff_clip_txt,mul_clip_txt),dim=1
                )
            else:
                x = torch.cat(
                    (ref_sentemb,mt_sentemb,ref_clip,imgs_clip,mts_clip),dim=1
                )
            score = self.ff(x)
            scores.append(score)

        score = torch.max(torch.stack(scores),dim=0).values

        return {"score" : score}