Spaces:
Running
on
Zero
Running
on
Zero
File size: 3,688 Bytes
bd9da36 7a3e114 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 |
# @package _global_
# Model
model:
_target_: sam2.modeling.sam2_base.SAM2Base
image_encoder:
_target_: sam2.modeling.backbones.image_encoder.ImageEncoder
scalp: 0
trunk:
_target_: sam2.modeling.backbones.vitdet.ViT
patch_size: 16
embed_dim: 384
depth: 12
num_heads: 6
mlp_ratio: 4.0
qkv_bias: true
drop_path_rate: 0.0
use_rel_pos: false
window_size: 14
window_block_indexes: [0, 1, 3, 4, 6, 7, 9, 10]
neck:
_target_: sam2.modeling.backbones.image_encoder.ViTDetNeck
position_encoding:
_target_: sam2.modeling.position_encoding.PositionEmbeddingSine
num_pos_feats: 256
normalize: true
scale: null
temperature: 10000
d_model: 256
backbone_channel_list: [384,]
neck_norm: LN
memory_attention:
_target_: sam2.modeling.memory_attention.MemoryAttention
d_model: 256
pos_enc_at_input: true
layer:
_target_: sam2.modeling.memory_attention.MemoryAttentionLayer
activation: relu
dim_feedforward: 2048
dropout: 0.1
pos_enc_at_attn: false
self_attention:
_target_: sam2.modeling.sam.transformer.RoPEAttention
rope_theta: 10000.0
feat_sizes: [32, 32]
embedding_dim: 256
num_heads: 1
downsample_rate: 1
dropout: 0.1
d_model: 256
pos_enc_at_cross_attn_keys: true
pos_enc_at_cross_attn_queries: false
cross_attention:
_target_: sam2.modeling.sam.transformer.RoPEAttention
rope_theta: 10000.0
feat_sizes: [32, 32]
rope_k_repeat: True
embedding_dim: 256
num_heads: 1
downsample_rate: 1
dropout: 0.1
kv_in_dim: 64
num_layers: 4
memory_encoder:
_target_: sam2.modeling.memory_encoder.MemoryEncoder
out_dim: 64
position_encoding:
_target_: sam2.modeling.position_encoding.PositionEmbeddingSine
num_pos_feats: 64
normalize: true
scale: null
temperature: 10000
mask_downsampler:
_target_: sam2.modeling.memory_encoder.MaskDownSampler
kernel_size: 3
stride: 2
padding: 1
fuser:
_target_: sam2.modeling.memory_encoder.Fuser
layer:
_target_: sam2.modeling.memory_encoder.CXBlock
dim: 256
kernel_size: 7
padding: 3
layer_scale_init_value: 1e-6
use_dwconv: True # depth-wise convs
num_layers: 2
num_maskmem: 7
image_size: 512
# apply scaled sigmoid on mask logits for memory encoder, and directly feed input mask as output mask
# SAM decoder
sigmoid_scale_for_mem_enc: 20.0
sigmoid_bias_for_mem_enc: -10.0
use_mask_input_as_output_without_sam: true
# Memory
directly_add_no_mem_embed: true
# use high-resolution feature map in the SAM mask decoder
# use_high_res_features_in_sam: true
use_high_res_features_in_sam: false
# output 3 masks on the first click on initial conditioning frames
multimask_output_in_sam: true
# SAM heads
iou_prediction_use_sigmoid: True
# cross-attend to object pointers from other frames (based on SAM output tokens) in the encoder
use_obj_ptrs_in_encoder: true
add_tpos_enc_to_obj_ptrs: false
only_obj_ptrs_in_the_past_for_eval: true
# object occlusion prediction
pred_obj_scores: true
pred_obj_scores_mlp: true
fixed_no_obj_ptr: true
# multimask tracking settings
multimask_output_for_tracking: true
use_multimask_token_for_obj_ptr: true
multimask_min_pt_num: 0
multimask_max_pt_num: 1
use_mlp_for_obj_ptr_proj: true
# Compilation flag
compile_image_encoder: true
|