Spaces:
Sleeping
Sleeping
File size: 13,360 Bytes
bc658ea 9516ab6 bc658ea 9516ab6 bc658ea 9516ab6 bc658ea 9516ab6 bc658ea 9516ab6 bc658ea 9516ab6 bc658ea 9516ab6 bc658ea 9516ab6 bc658ea 9516ab6 bc658ea 9516ab6 bc658ea 9516ab6 bc658ea 9516ab6 bc658ea 9516ab6 bc658ea 9516ab6 bc658ea |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 |
import copy
import os # noqa
import gradio as gr
import numpy as np
import torch
from PIL import ImageDraw
from torchvision.transforms import ToTensor
from utils.tools import format_results, point_prompt
from utils.tools_gradio import fast_process
# Most of our demo code is from [FastSAM Demo](https://huggingface.co/spaces/An-619/FastSAM). Thanks for AN-619.
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
gpu_checkpoint_path = "efficientsam_s_gpu.jit"
cpu_checkpoint_path = "efficientsam_s_cpu.jit"
if torch.cuda.is_available():
model = torch.jit.load(gpu_checkpoint_path)
else:
model = torch.jit.load(cpu_checkpoint_path)
model.eval()
# Description
title = "<center><strong><font size='8'>Efficient Segment Anything(EfficientSAM)<font></strong></center>"
description_e = """This is a demo of [Efficient Segment Anything(EfficientSAM) Model](https://github.com/yformer/EfficientSAM).
"""
description_p = """# Interactive Instance Segmentation
- Point-prompt instruction
<ol>
<li> Click on the left image (point input), visualizing the point on the right image </li>
<li> Click the button of Segment with Point Prompt </li>
</ol>
- Box-prompt instruction
<ol>
<li> Click on the left image (one point input), visualizing the point on the right image </li>
<li> Click on the left image (another point input), visualizing the point and the box on the right image</li>
<li> Click the button of Segment with Box Prompt </li>
</ol>
- Github [link](https://github.com/yformer/EfficientSAM)
"""
# examples
examples = [
["examples/image1.jpg"],
["examples/image2.jpg"],
["examples/image3.jpg"],
["examples/image4.jpg"],
["examples/image5.jpg"],
["examples/image6.jpg"],
["examples/image7.jpg"],
["examples/image8.jpg"],
["examples/image9.jpg"],
["examples/image10.jpg"],
["examples/image11.jpg"],
["examples/image12.jpg"],
["examples/image13.jpg"],
["examples/image14.jpg"],
]
default_example = examples[0]
css = "h1 { text-align: center } .about { text-align: justify; padding-left: 10%; padding-right: 10%; }"
def segment_with_boxs(
image,
seg_image,
input_size=1024,
better_quality=False,
withContours=True,
use_retina=True,
mask_random_color=True,
):
try:
global global_points
global global_point_label
if len(global_points) < 2:
return seg_image
print("Original Image : ", image.size)
input_size = int(input_size)
w, h = image.size
scale = input_size / max(w, h)
new_w = int(w * scale)
new_h = int(h * scale)
image = image.resize((new_w, new_h))
print("Scaled Image : ", image.size)
print("Scale : ", scale)
scaled_points = np.array(
[[int(x * scale) for x in point] for point in global_points]
)
scaled_points = scaled_points[:2]
scaled_point_label = np.array(global_point_label)[:2]
print(scaled_points, scaled_points is not None)
print(scaled_point_label, scaled_point_label is not None)
if scaled_points.size == 0 and scaled_point_label.size == 0:
print("No points selected")
return image
nd_image = np.array(image)
img_tensor = ToTensor()(nd_image)
print(img_tensor.shape)
pts_sampled = torch.reshape(torch.tensor(scaled_points), [1, 1, -1, 2])
pts_sampled = pts_sampled[:, :, :2, :]
pts_labels = torch.reshape(torch.tensor([2, 3]), [1, 1, 2])
predicted_logits, predicted_iou = model(
img_tensor[None, ...].to(device),
pts_sampled.to(device),
pts_labels.to(device),
)
predicted_logits = predicted_logits.cpu()
all_masks = torch.ge(
torch.sigmoid(predicted_logits[0, 0, :, :, :]), 0.5
).numpy()
predicted_iou = predicted_iou[0, 0, ...].cpu().detach().numpy()
max_predicted_iou = -1
selected_mask_using_predicted_iou = None
selected_predicted_iou = None
for m in range(all_masks.shape[0]):
curr_predicted_iou = predicted_iou[m]
if (
curr_predicted_iou > max_predicted_iou
or selected_mask_using_predicted_iou is None
):
max_predicted_iou = curr_predicted_iou
selected_mask_using_predicted_iou = all_masks[m : m + 1]
selected_predicted_iou = predicted_iou[m : m + 1]
results = format_results(
selected_mask_using_predicted_iou,
selected_predicted_iou,
predicted_logits,
0,
)
annotations = results[0]["segmentation"]
annotations = np.array([annotations])
print(scaled_points.shape)
fig = fast_process(
annotations=annotations,
image=image,
device=device,
scale=(1024 // input_size),
better_quality=better_quality,
mask_random_color=mask_random_color,
use_retina=use_retina,
bbox=scaled_points.reshape([4]),
withContours=withContours,
)
global_points = []
global_point_label = []
# return fig, None
return fig
except:
return image
def segment_with_points(
image,
input_size=1024,
better_quality=False,
withContours=True,
use_retina=True,
mask_random_color=True,
):
try:
global global_points
global global_point_label
print("Original Image : ", image.size)
input_size = int(input_size)
w, h = image.size
scale = input_size / max(w, h)
new_w = int(w * scale)
new_h = int(h * scale)
image = image.resize((new_w, new_h))
print("Scaled Image : ", image.size)
print("Scale : ", scale)
if global_points is None:
return image
if len(global_points) < 1:
return image
scaled_points = np.array(
[[int(x * scale) for x in point] for point in global_points]
)
scaled_point_label = np.array(global_point_label)
print(scaled_points, scaled_points is not None)
print(scaled_point_label, scaled_point_label is not None)
if scaled_points.size == 0 and scaled_point_label.size == 0:
print("No points selected")
return image
nd_image = np.array(image)
img_tensor = ToTensor()(nd_image)
print(img_tensor.shape)
pts_sampled = torch.reshape(torch.tensor(scaled_points), [1, 1, -1, 2])
pts_labels = torch.reshape(torch.tensor(global_point_label), [1, 1, -1])
predicted_logits, predicted_iou = model(
img_tensor[None, ...].to(device),
pts_sampled.to(device),
pts_labels.to(device),
)
predicted_logits = predicted_logits.cpu()
all_masks = torch.ge(
torch.sigmoid(predicted_logits[0, 0, :, :, :]), 0.5
).numpy()
predicted_iou = predicted_iou[0, 0, ...].cpu().detach().numpy()
results = format_results(all_masks, predicted_iou, predicted_logits, 0)
annotations, _ = point_prompt(
results, scaled_points, scaled_point_label, new_h, new_w
)
annotations = np.array([annotations])
fig = fast_process(
annotations=annotations,
image=image,
device=device,
scale=(1024 // input_size),
better_quality=better_quality,
mask_random_color=mask_random_color,
points=scaled_points,
bbox=None,
use_retina=use_retina,
withContours=withContours,
)
global_points = []
global_point_label = []
# return fig, None
return fig
except:
return image
def get_points_with_draw(image, cond_image, evt: gr.SelectData):
global global_points
global global_point_label
if len(global_points) == 0:
image = copy.deepcopy(cond_image)
x, y = evt.index[0], evt.index[1]
label = "Add Mask"
point_radius, point_color = 15, (255, 255, 0) if label == "Add Mask" else (
255,
0,
255,
)
global_points.append([x, y])
global_point_label.append(1 if label == "Add Mask" else 0)
print(x, y, label == "Add Mask")
if image is not None:
draw = ImageDraw.Draw(image)
draw.ellipse(
[
(x - point_radius, y - point_radius),
(x + point_radius, y + point_radius),
],
fill=point_color,
)
return image
def get_points_with_draw_(image, cond_image, evt: gr.SelectData):
global global_points
global global_point_label
if len(global_points) == 0:
image = copy.deepcopy(cond_image)
if len(global_points) > 2:
return image
x, y = evt.index[0], evt.index[1]
label = "Add Mask"
point_radius, point_color = 15, (255, 255, 0) if label == "Add Mask" else (
255,
0,
255,
)
global_points.append([x, y])
global_point_label.append(1 if label == "Add Mask" else 0)
print(x, y, label == "Add Mask")
if image is not None:
draw = ImageDraw.Draw(image)
draw.ellipse(
[
(x - point_radius, y - point_radius),
(x + point_radius, y + point_radius),
],
fill=point_color,
)
if len(global_points) == 2:
x1, y1 = global_points[0]
x2, y2 = global_points[1]
if x1 < x2:
draw.rectangle([x1, y1, x2, y2], outline="red", width=5)
else:
draw.rectangle([x2, y2, x1, y1], outline="red", width=5)
global_points = global_points[::-1]
global_point_label = global_point_label[::-1]
return image
cond_img_p = gr.Image(label="Input with Point", value=default_example[0], type="pil")
cond_img_b = gr.Image(label="Input with Box", value=default_example[0], type="pil")
segm_img_p = gr.Image(
label="Segmented Image with Point-Prompt", interactive=False, type="pil"
)
segm_img_b = gr.Image(
label="Segmented Image with Box-Prompt", interactive=False, type="pil"
)
global_points = []
global_point_label = []
input_size_slider = gr.components.Slider(
minimum=512,
maximum=1024,
value=1024,
step=64,
label="Input_size",
info="Our model was trained on a size of 1024",
)
with gr.Blocks(css=css, title="Efficient SAM") as demo:
with gr.Row():
with gr.Column(scale=1):
# Title
gr.Markdown(title)
with gr.Tab("Point mode"):
# Images
with gr.Row(variant="panel"):
with gr.Column(scale=1):
cond_img_p.render()
with gr.Column(scale=1):
segm_img_p.render()
# Submit & Clear
# ###
with gr.Row():
with gr.Column():
with gr.Column():
segment_btn_p = gr.Button(
"Segment with Point Prompt", variant="primary"
)
clear_btn_p = gr.Button("Clear", variant="secondary")
gr.Markdown("Try some of the examples below ⬇️")
gr.Examples(
examples=examples,
inputs=[cond_img_p],
examples_per_page=4,
)
with gr.Column():
# Description
gr.Markdown(description_p)
with gr.Tab("Box mode"):
# Images
with gr.Row(variant="panel"):
with gr.Column(scale=1):
cond_img_b.render()
with gr.Column(scale=1):
segm_img_b.render()
# Submit & Clear
with gr.Row():
with gr.Column():
with gr.Column():
segment_btn_b = gr.Button(
"Segment with Box Prompt", variant="primary"
)
clear_btn_b = gr.Button("Clear", variant="secondary")
gr.Markdown("Try some of the examples below ⬇️")
gr.Examples(
examples=examples,
inputs=[cond_img_b],
examples_per_page=4,
)
with gr.Column():
# Description
gr.Markdown(description_p)
cond_img_p.select(get_points_with_draw, [segm_img_p, cond_img_p], segm_img_p)
cond_img_b.select(get_points_with_draw_, [segm_img_b, cond_img_b], segm_img_b)
segment_btn_p.click(segment_with_points, inputs=[cond_img_p], outputs=segm_img_p)
segment_btn_b.click(
segment_with_boxs, inputs=[cond_img_b, segm_img_b], outputs=segm_img_b
)
def clear():
return None, None
def clear_text():
return None, None, None
clear_btn_p.click(clear, outputs=[cond_img_p, segm_img_p])
clear_btn_b.click(clear, outputs=[cond_img_b, segm_img_b])
demo.queue()
demo.launch(share=True)
|