Spaces:
Running
Running
File size: 12,927 Bytes
b82263e d93bc09 b82263e d93bc09 b82263e d93bc09 b82263e d93bc09 b82263e c5e7f88 c2f454d b82263e b0b2255 b82263e c2f454d b82263e 71d6f85 d93bc09 71d6f85 d93bc09 b82263e 9aa9bdf b82263e 9aa9bdf b82263e 9aa9bdf b82263e 9aa9bdf b82263e b0b2255 b82263e b0b2255 b82263e b0b2255 b82263e b0b2255 b82263e b0b2255 d93bc09 b82263e b0b2255 d93bc09 b82263e 9aa9bdf b82263e d93bc09 b82263e d93bc09 b82263e d93bc09 b82263e d93bc09 b82263e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 |
import streamlit as st
from PIL import Image
import torch
from torchvision import transforms
import pydeck as pdk
from geopy.geocoders import Nominatim
import time
import requests
from io import BytesIO
import reverse_geocoder as rg
from bs4 import BeautifulSoup
from urllib.parse import urljoin
from models.huggingface import Geolocalizer
import spacy
from collections import Counter
from spacy.cli import download
def load_spacy_model(model_name="en_core_web_md"):
try:
return spacy.load(model_name)
except IOError:
print(f"Model {model_name} not found, downloading...")
download(model_name)
return spacy.load(model_name)
nlp = load_spacy_model()
IMAGE_SIZE = (224, 224)
GEOLOC_MODEL_NAME = "osv5m/baseline"
# Load geolocation model
@st.cache_resource(show_spinner=True)
def load_geoloc_model() -> Geolocalizer:
with st.spinner('Loading model...'):
try:
model = Geolocalizer.from_pretrained(GEOLOC_MODEL_NAME)
model.eval()
return model
except Exception as e:
st.error(f"Failed to load the model: {e}")
return None
# Function to find the most frequent location
def most_frequent_locations(text: str):
doc = nlp(text)
locations = []
# Collect all identified location entities
for ent in doc.ents:
if ent.label_ in ['LOC', 'GPE']:
print(f"Entity: {ent.text} | Label: {ent.label_} | Sentence: {ent.sent}")
locations.append(ent.text)
# Count occurrences and extract the most common locations
if locations:
location_counts = Counter(locations)
most_common_locations = location_counts.most_common(2) # Adjust the number as needed
# Format the output to show location names along with their counts
common_locations_str = ', '.join([f"{loc[0]} ({loc[1]} occurrences)" for loc in most_common_locations])
return f"Most Mentioned Locations: {common_locations_str}", [loc[0] for loc in most_common_locations]
else:
return "No locations found", []
# Transform image for model prediction
def transform_image(image: Image) -> torch.Tensor:
transform = transforms.Compose([
transforms.Resize(IMAGE_SIZE),
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
])
return transform(image).unsqueeze(0)
def check_location_match(location_query, most_common_locations):
name = location_query['name']
admin1 = location_query['admin1']
cc = location_query['cc']
for loc in most_common_locations:
if name in loc and admin1 in loc and cc in loc:
return True
return False
# Fetch city GeoJSON data
def get_city_geojson(location_name: str) -> dict:
geolocator = Nominatim(user_agent="predictGeolocforImage")
try:
location = geolocator.geocode(location_name, geometry='geojson')
return location.raw['geojson'] if location else None
except Exception as e:
st.error(f"Failed to geocode location: {e}")
return None
# Fetch media from URL
def get_media(url: str) -> list:
try:
response = requests.get(url)
response.raise_for_status()
data = response.json()
return [(media['media_url'], entry['full_text'])
for entry in data for media in entry.get('media', []) if 'media_url' in media]
except requests.RequestException as e:
st.error(f"Failed to fetch media URL: {e}")
return None
# Predict location from image
def predict_location(image: Image, model: Geolocalizer) -> tuple:
with st.spinner('Processing image and predicting location...'):
start_time = time.time()
try:
img_tensor = transform_image(image)
gps_radians = model(img_tensor)
gps_degrees = torch.rad2deg(gps_radians).squeeze(0).cpu().tolist()
location_query = rg.search((gps_degrees[0], gps_degrees[1]))[0]
location_name = f"{location_query['name']}, {location_query['admin1']}, {location_query['cc']}"
city_geojson = get_city_geojson(location_name)
processing_time = time.time() - start_time
return gps_degrees, location_query, city_geojson, processing_time
except Exception as e:
st.error(f"Failed to predict the location: {e}")
return None
# Display map in Streamlit
def display_map(city_geojson: dict, gps_degrees: list) -> None:
map_view = pdk.Deck(
map_style='mapbox://styles/mapbox/light-v9',
initial_view_state=pdk.ViewState(
latitude=gps_degrees[0],
longitude=gps_degrees[1],
zoom=8,
pitch=0,
),
layers=[
pdk.Layer(
'GeoJsonLayer',
data=city_geojson,
get_fill_color=[255, 180, 0, 140],
pickable=True,
stroked=True,
filled=True,
extruded=False,
line_width_min_pixels=1,
),
],
)
st.pydeck_chart(map_view)
# Display image
def display_image(image_url: str) -> None:
try:
response = requests.get(image_url)
response.raise_for_status()
image_bytes = BytesIO(response.content)
st.image(image_bytes, caption=f'Image from URL: {image_url}', use_column_width=True)
except requests.RequestException as e:
st.error(f"Failed to fetch image at URL {image_url}: {e}")
except Exception as e:
st.error(f"An error occurred: {e}")
# Scrape webpage for text and images
def scrape_webpage(url: str) -> tuple:
with st.spinner('Scraping web page...'):
try:
response = requests.get(url)
response.raise_for_status()
soup = BeautifulSoup(response.content, 'html.parser')
base_url = url # Adjust based on <base> tags or other HTML clues
text = ''.join(p.text for p in soup.find_all('p'))
images = [urljoin(base_url, img['src']) for img in soup.find_all('img') if 'src' in img.attrs]
return text, images
except requests.RequestException as e:
st.error(f"Failed to fetch and parse the URL: {e}")
return None, None
def main():
st.title('Welcome to Geolocation Guesstimation Demo 👋')
# Define page navigation using the sidebar
page = st.sidebar.selectbox(
"Choose your action:",
("Home", "Images", "Social Media", "Web Pages"),
index=0 # Default to Home
)
st.sidebar.success("Select a demo above.")
st.sidebar.info(
"""
- Web App URL: <https://yunusserhat-guesstimatelocation.hf.space/>
""")
st.sidebar.title("Contact")
st.sidebar.info(
"""
Yunus Serhat Bıçakçı at [yunusserhat.com](https://yunusserhat.com) | [GitHub](https://github.com/yunusserhat) | [Twitter](https://twitter.com/yunusserhat) | [LinkedIn](https://www.linkedin.com/in/yunusserhat)
""")
if page == "Home":
st.write("Welcome to the Geolocation Predictor. Please select an action from the sidebar dropdown.")
elif page == "Images":
upload_images_page()
elif page == "Social Media":
social_media_page()
elif page == "Web Pages":
web_page_url_page()
def upload_images_page():
st.header("Image Upload for Geolocation Prediction")
uploaded_files = st.file_uploader("Choose images...", type=["jpg", "jpeg", "png"], accept_multiple_files=True)
if uploaded_files:
for idx, file in enumerate(uploaded_files, start=1):
with st.spinner(f"Processing {file.name}..."):
image = Image.open(file).convert('RGB')
st.image(image, caption=f'Uploaded Image: {file.name}', use_column_width=True)
model = load_geoloc_model()
if model:
result = predict_location(image, model) # Assume this function is defined elsewhere
if result:
gps_degrees, location_query, city_geojson, processing_time = result
st.write(
f"City: {location_query['name']}, Region: {location_query['admin1']}, Country: {location_query['cc']}")
if city_geojson:
display_map(city_geojson, gps_degrees)
st.write(f"Processing Time (seconds): {processing_time}")
def social_media_page():
st.header("Social Media Analyser")
social_media_url = st.text_input("Enter a social media URL to analyse:", key='social_media_url_input')
if social_media_url:
media_data = get_media(social_media_url)
if media_data:
full_text = media_data[0][1]
st.subheader("Full Text")
st.write(full_text)
most_used_location, most_common_locations = most_frequent_locations(full_text)
st.subheader("Most Frequent Location")
st.write(most_used_location)
for idx, (media_url, _) in enumerate(media_data, start=1):
st.subheader(f"Image {idx}")
response = requests.get(media_url)
if response.status_code == 200:
image = Image.open(BytesIO(response.content)).convert('RGB')
st.image(image, caption=f'Image from URL: {media_url}', use_column_width=True)
model = load_geoloc_model()
if model:
result = predict_location(image, model)
if result:
gps_degrees, location_query, city_geojson, processing_time = result
location_name = f"{location_query['name']}, {location_query['admin1']}, {location_query['cc']}"
st.write(
f"City: {location_query['name']}, Region: {location_query['admin1']}, Country: {location_query['cc']}")
if city_geojson:
display_map(city_geojson, gps_degrees)
st.write(f"Processing Time (seconds): {processing_time}")
# Check for match and notify
if check_location_match(location_query, most_common_locations):
st.success(
f"The predicted location {location_name} matches one of the most frequently mentioned locations!")
else:
st.error(f"Failed to fetch image at URL {media_url}: HTTP {response.status_code}")
def web_page_url_page():
st.header("Web Page Analyser")
web_page_url = st.text_input("Enter a web page URL to scrape:", key='web_page_url_input')
if web_page_url:
text, images = scrape_webpage(web_page_url)
if text:
st.subheader("Extracted Text First 500 Characters:")
st.write(text[:500])
most_used_location, most_common_locations = most_frequent_locations(text)
st.subheader("Most Frequent Location")
st.write(most_used_location)
if images:
selected_image_url = st.selectbox("Select an image to predict location:", images)
if selected_image_url:
response = requests.get(selected_image_url)
if response.status_code == 200:
image = Image.open(BytesIO(response.content)).convert('RGB')
st.image(image, caption=f'Selected Image from URL: {selected_image_url}', use_column_width=True)
model = load_geoloc_model()
if model:
result = predict_location(image, model)
if result:
gps_degrees, location_query, city_geojson, processing_time = result
location_name = f"{location_query['name']}, {location_query['admin1']}, {location_query['cc']}"
st.write(
f"City: {location_query['name']}, Region: {location_query['admin1']}, Country: {location_query['cc']}")
if city_geojson:
display_map(city_geojson, gps_degrees)
st.write(f"Processing Time (seconds): {processing_time}")
# Check for match and notify
if check_location_match(location_query, most_common_locations):
st.success(
f"The predicted location {location_name} matches one of the most frequently mentioned locations!")
if __name__ == '__main__':
main()
|