Spaces:
Sleeping
Sleeping
File size: 1,891 Bytes
9a9e471 3392dd6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 |
#!/usr/bin/env python
# coding: utf-8
import streamlit as st
from tensorflow.keras.models import load_model
from transformers import logging
# Hugging Face Transformers kütüphanesinden gelen hataları kapat
logging.set_verbosity_error()
st.title('Chat with Me')
model = load_model('text_classification_model.h5')
# Chat history
if 'chat' not in st.session_state:
st.session_state.chat = model.start_chat(history=[])
# Input for user question
soru = st.text_input('Sor:')
# Function to extract text parts from the response
def extract_text(response_parts):
return response_parts[0].text.strip() if response_parts[0].text else ""
# Handle "Sor" button click
if st.button('Sor'):
if soru:
response = st.session_state.chat.send_message(soru)
st.session_state.chat.history.append({'role': 'model', 'text': extract_text(response.parts)})
st.session_state.chat.history.append({'role': 'user', 'text': soru})
st.session_state.last_question = soru
st.session_state.last_response = extract_text(response.parts)
st.experimental_rerun()
# Display chat history
for message in reversed(st.session_state.chat.history):
if message.role == 'user':
st.markdown(f'<div style="text-align: right; background-color: #2F2F2F; padding: 10px; border-radius: 10px; margin: 10px; width: fit-content;">👤 Sen: {message["text"]}</div>', unsafe_allow_html=True)
elif message.role == 'model':
st.markdown(f'<div style="text-align: left; background-color: #2E2E2E; padding: 10px; border-radius: 10px; margin: 10px; width: fit-content;">🤖 Bot: {message["text"]}</div>', unsafe_allow_html=True)
# Handle "Yeni Sohbet" button click
if st.button('Yeni Sohbet'):
st.session_state.chat = model.start_chat(history=[])
st.session_state.last_question = ''
st.session_state.last_response = ''
st.experimental_rerun() |