File size: 4,897 Bytes
02df9f8
5c3cea5
02df9f8
 
 
9bfa66b
02df9f8
 
 
 
9bfa66b
02df9f8
 
 
9428a07
 
 
 
02df9f8
 
 
 
 
39a2dae
eaa0586
f7dc2d2
 
 
8fa0ae4
70487ef
 
 
eaa0586
70487ef
f7dc2d2
eaa0586
f7dc2d2
3e9942b
f7dc2d2
0ad2aca
 
 
 
 
 
3e9942b
f7dc2d2
0ad2aca
 
 
 
f7dc2d2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
685026a
f7dc2d2
685026a
f7dc2d2
685026a
f7dc2d2
eaa0586
f7dc2d2
02df9f8
 
 
3f861c3
513d0fe
 
3f861c3
9bfa66b
685026a
8fa0ae4
9bfa66b
1efd23b
 
9428a07
 
 
 
8fa0ae4
486c21f
 
6cc23f5
02df9f8
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
import spaces
import torch
import gradio as gr
from transformers import AutoTokenizer, AutoModelForCausalLM

model_name = 'yuntian-deng/gpt2-implicit-cot-multiplication'
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name)

def preprocess(num):
    num = str(num).strip().replace(' ', '')
    reversed_num = ' '.join(num[::-1])
    return reversed_num

def postprocess(raw_output):
    prediction = raw_output.replace(' ', '')[::-1]
    return prediction

@spaces.GPU
def predict_product(num1, num2):
    input_text = f'{preprocess(num1)} * {preprocess(num2)} ='
    inputs = tokenizer(input_text, return_tensors='pt').to('cuda' if torch.cuda.is_available() else 'cpu')
    model.to('cuda' if torch.cuda.is_available() else 'cpu')

    generated_ids = inputs['input_ids']
    prediction = ""
    correct_product = ""
    valid_input = True

    try:
        num1_int = int(num1)
        num2_int = int(num2)
        correct_product = str(num1_int * num2_int)
    except ValueError:
        valid_input = False

    eos_token_id = tokenizer.eos_token_id
    past_key_values = None
    for _ in range(100):  # Set a maximum limit to prevent infinite loops
        outputs = model(
            input_ids=generated_ids,
            past_key_values=past_key_values,
            use_cache=True
        )
        logits = outputs.logits
        past_key_values = outputs.past_key_values
        
        next_token_id = torch.argmax(logits[:, -1, :], dim=-1)
        generated_ids = torch.cat((generated_ids, next_token_id.unsqueeze(-1)), dim=-1)
        
        if next_token_id.item() == eos_token_id:
            break
        
        output_text = tokenizer.decode(generated_ids[0], skip_special_tokens=True)
        prediction = postprocess(output_text[len(input_text):])
        
        # Create the diff for HighlightedText
        diff = []
        for i in range(max(len(prediction), len(correct_product))):
            if i < len(prediction) and i < len(correct_product) and prediction[i] == correct_product[i]:
                diff.append((prediction[i], None))  # No highlight for correct digits
            elif i < len(prediction) and (i >= len(correct_product) or prediction[i] != correct_product[i]):
                diff.append((prediction[i], "+"))  # Highlight incorrect digits in red
            if i < len(correct_product) and (i >= len(prediction) or prediction[i] != correct_product[i]):
                diff.append((correct_product[i], "-"))  # Highlight missing/incorrect digits in green

        yield diff, ""

    if valid_input:
        is_correct = prediction == correct_product
        result_message = "Correct!" if is_correct else f"Incorrect! The correct product is {correct_product}."
    else:
        result_message = "Invalid input. Could not evaluate correctness."

    # Final diff for the complete prediction
    final_diff = []
    for i in range(max(len(prediction), len(correct_product))):
        if i < len(prediction) and i < len(correct_product) and prediction[i] == correct_product[i]:
            final_diff.append((prediction[i], None))  # No highlight for correct digits
        elif i < len(prediction) and (i >= len(correct_product) or prediction[i] != correct_product[i]):
            final_diff.append((prediction[i], "+"))  # Highlight incorrect digits in red
        if i < len(correct_product) and (i >= len(prediction) or prediction[i] != correct_product[i]):
            final_diff.append((correct_product[i], "-"))  # Highlight missing/incorrect digits in green

    yield final_diff, result_message

demo = gr.Interface(
    fn=predict_product,
    inputs=[
        gr.Textbox(label='First Number (up to 12 digits)', value='12345'),
        gr.Textbox(label='Second Number (up to 12 digits)', value='67890'),
    ],
    outputs=[
        gr.HighlightedText(label='Predicted Product with Matching and Unmatching Digits Highlighted', combine_adjacent=True, show_legend=True, color_map={"-": "green", "+": "red"}),
        gr.HTML(label='Result Message')
    ],
    title='GPT2 Direct Multiplication Calculator (Without Using Chain-of-Thought)',
    description='This demo uses GPT2 to directly predict the product of two numbers without using any intermediate reasoning steps. The GPT2 model has been fine-tuned to internalize chain-of-thought reasoning within its hidden states, following our stepwise internalization approach detailed in the paper linked at the bottom of this page.',
    article="""
    - [Paper: From Explicit CoT to Implicit CoT: Learning to Internalize CoT Step by Step](https://arxiv.org/pdf/2405.14838)
    - [Code Repository](https://github.com/da03/Internalize_CoT_Step_by_Step)
    - [Tweet Announcement](https://twitter.com/yuntiandeng/status/1795854740879774036)
    """,
    clear_btn=None,
    submit_btn="Multiply!",
    live=False
)

demo.launch()