File size: 1,421 Bytes
a64a86e f80395f a64a86e f80395f a64a86e f80395f a64a86e a16ee93 a64a86e a16ee93 a64a86e a16ee93 a64a86e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 |
from flask import Flask, request, jsonify
from transformers import AutoModelForSequenceClassification, AutoTokenizer, pipeline
import os
local_path = "./models/roberta-large"
os.environ["HF_HOME"] = "/app/hf_home"
os.environ["TRANSFORMERS_CACHE"] = "/app/cache" # λ³ν μ¬μ© κ°λ₯
model_id = "klue/roberta-large"
if os.path.exists(local_path):
print("π λͺ¨λΈ λ‘컬μμ λ‘λ μ€...")
model = AutoModelForSequenceClassification.from_pretrained(local_path)
tokenizer = AutoTokenizer.from_pretrained(local_path)
else:
print("β¬οΈ λͺ¨λΈ νκΉ
νμ΄μ€μμ λ€μ΄λ‘λ μ€...")
model = AutoModelForSequenceClassification.from_pretrained(
model_id, cache_dir=os.environ["HF_HOME"]
)
tokenizer = AutoTokenizer.from_pretrained(model_id, cache_dir=os.environ["HF_HOME"])
os.makedirs(local_path, exist_ok=True)
model.save_pretrained(local_path)
tokenizer.save_pretrained(local_path)
app = Flask(__name__)
print("π λͺ¨λΈ λ‘λ μλ£")
@app.route("/generate", methods=["GET"])
def generate():
return jsonify({"result": "generate/get"})
@app.route("/generate", methods=["POST"])
def generate_post():
data = request.json
print(data)
return jsonify({"result": "generate/post"})
@app.route("/", methods=["GET"])
def index():
return jsonify({"result": "success"})
if __name__ == "__main__":
app.run(host="0.0.0.0", port=7860)
|