File size: 1,421 Bytes
a64a86e
 
 
 
 
 
f80395f
 
 
a64a86e
 
 
 
 
 
 
 
f80395f
 
 
 
a64a86e
 
 
 
 
 
f80395f
 
a64a86e
a16ee93
a64a86e
a16ee93
 
 
 
 
a64a86e
 
a16ee93
 
 
 
 
a64a86e
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
from flask import Flask, request, jsonify
from transformers import AutoModelForSequenceClassification, AutoTokenizer, pipeline
import os

local_path = "./models/roberta-large"

os.environ["HF_HOME"] = "/app/hf_home"
os.environ["TRANSFORMERS_CACHE"] = "/app/cache"  # 병행 μ‚¬μš© κ°€λŠ₯

model_id = "klue/roberta-large"

if os.path.exists(local_path):
    print("πŸ”„ λͺ¨λΈ λ‘œμ»¬μ—μ„œ λ‘œλ“œ 쀑...")
    model = AutoModelForSequenceClassification.from_pretrained(local_path)
    tokenizer = AutoTokenizer.from_pretrained(local_path)
else:
    print("⬇️ λͺ¨λΈ ν—ˆκΉ…νŽ˜μ΄μŠ€μ—μ„œ λ‹€μš΄λ‘œλ“œ 쀑...")
    model = AutoModelForSequenceClassification.from_pretrained(
        model_id, cache_dir=os.environ["HF_HOME"]
    )
    tokenizer = AutoTokenizer.from_pretrained(model_id, cache_dir=os.environ["HF_HOME"])
    os.makedirs(local_path, exist_ok=True)
    model.save_pretrained(local_path)
    tokenizer.save_pretrained(local_path)

app = Flask(__name__)

print("πŸ”„ λͺ¨λΈ λ‘œλ“œ μ™„λ£Œ")


@app.route("/generate", methods=["GET"])
def generate():
    return jsonify({"result": "generate/get"})


@app.route("/generate", methods=["POST"])
def generate_post():
    data = request.json
    print(data)
    return jsonify({"result": "generate/post"})


@app.route("/", methods=["GET"])
def index():
    return jsonify({"result": "success"})


if __name__ == "__main__":
    app.run(host="0.0.0.0", port=7860)