alps / ocr_component1.py
yumikimi381's picture
Upload folder using huggingface_hub
daf0288 verified
raw
history blame
8.69 kB
from typing import Any, List, Literal, Mapping, Optional, Tuple
import time
from PIL import Image
# Numpy image type
import numpy.typing as npt
from numpy import uint8
ImageType = npt.NDArray[uint8]
import numpy as np
import uuid
from doctrfiles import DoctrWordDetector,DoctrTextRecognizer,Wordboxes
from deepdoc import RagFlow
from utils import LineAnnotation,WordAnnotation,getlogger,cropImageExtraMargin,crop_an_Image,cropImages,get_new_coord
from numpy.typing import NDArray
MARGIN_FACTOR = 1.4
class OCRComponent1():
"""
This component uses RagFlow as text line detector
Uses DocTR's word detector and text recognizer
"""
def __init__(self,englishflag =False):
logger = getlogger("1")
start_time = time.time()
self.textlineDetector = RagFlow()
end_time = time.time()
execution_time = end_time - start_time
logger.info(f"time to initialize Ragflow: {execution_time} seconds")
start_time = time.time()
"""
self.wordDetector = DoctrWordDetector(architecture="db_resnet50",
path_weights="doctrfiles/models/db_resnet50-79bd7d70.pt")
"""
self.wordDetector = DoctrWordDetector(architecture="db_resnet50",
path_weights="doctrfiles/models/db_resnet50-79bd7d70.pt",
path_config_json ="doctrfiles/models/db_resnet50_config.json")
end_time = time.time()
execution_time = end_time - start_time
logger.info(f"time to initialize DoctrWordDetectorDebug: {execution_time} seconds")
start_time = time.time()
if not englishflag:
self.textRecognizer = DoctrTextRecognizer(architecture="parseq", path_weights="doctrfiles/models/doctr-multilingual-parseq.bin",
path_config_json="doctrfiles/models/multilingual-parseq-config.json")
else:
self.textRecognizer = DoctrTextRecognizer(architecture="master", path_weights="doctrfiles/models/master-fde31e4a.pt",
path_config_json="doctrfiles/models/master.json")
end_time = time.time()
execution_time = end_time - start_time
logger.info(f"time to initialize DoctrTextRecognizer: {execution_time} seconds")
@staticmethod
def save_detection(detected_lines_images:List[ImageType], prefix = './res/test1/res_'):
i = 0
for img in detected_lines_images:
pilimg = Image.fromarray(img)
pilimg.save(prefix+str(i)+'.png')
i=i+1
@staticmethod
def convert_coordinates(original_coord = NDArray[np.float32],detection_res = NDArray[np.float32])-> NDArray[np.float32]:
"""
Type if original_coord : np.array([
[xmin, ymin],
[xmax, ymin],
[xmax, ymax],
[xmin, ymax]
]
"""
height = original_coord[3][1] - original_coord[0][1]
width = original_coord[1][0] - original_coord[0][0]
if width/height<1.6:
bigger = max(height,width)
new_height = int(bigger *3)
new_width = int(bigger*3)
else:
bigger = max(height,width)
new_height = int(bigger *MARGIN_FACTOR)
new_width = int(bigger*MARGIN_FACTOR)
y_offset = (new_height - height) // 2
x_offset = (new_width - width) // 2
#new_img[y_offset:y_offset + height, x_offset:x_offset+width] = dst_img
#x,y offsets are the min x and y
# Calculate relative coordinate to the original image in the padded image
rel = np.array(
[
[detection_res[0][0] - x_offset, detection_res[0][1]-y_offset],
[detection_res[1][0] - x_offset, detection_res[1][1]-y_offset],
[detection_res[2][0] - x_offset, detection_res[2][1]-y_offset],
[detection_res[3][0] - x_offset, detection_res[3][1]-y_offset],
]
)
xmin = original_coord[0][0]
ymin = original_coord[0][1]
xmax = original_coord[1][0]
ymax = original_coord[2][1]
#This used to return 4 x 2 array
#rel_in_page =[[xmin+b[0],ymin+b[1]] for b in rel]
#Now returns 4x1 array
rel_in_page = np.array([xmin+rel[0][0],ymin+rel[0][1], xmin +rel[1][0], ymin +rel[2][1]])
return rel_in_page
def predict(self, img:ImageType)->Tuple[List[LineAnnotation],List[WordAnnotation]]:
logger = getlogger("1")
start_time = time.time()
"""
bxs : Text line detection results - bounding boxes
Each element looks like : [array([[ 90., 98.],
[313., 100.],
[312., 129.],
[ 90., 127.]], dtype=float32)
[left_lower, right_lower, right_upper, left_upper]
"""
# 4x2 array
bxs:List[NDArray[np.float32]] = self.textlineDetector.predict(img = np.array(img))
end_time = time.time()
execution_time = end_time - start_time
logger.info(f"time to detecttextline: {execution_time} seconds")
line_annotations = {}
straightboxs = []
for points in bxs:
xmin, ymin, xmax, ymax = get_new_coord(img.shape[1],img.shape[0],points)
b = np.array([
[xmin, ymin],
[xmax, ymin],
[xmax, ymax],
[xmin, ymax]
], dtype=np.float32)
straightboxs.append(b)
ann = LineAnnotation(box =[xmin, ymin, xmax, ymax])
line_annotations[ann.index] = ann
"""
detected_lines_images : cropped images of detected lines
"""
# Double computation in line 117 - we calculate the straight lines again
#Straightboxes : 4x 2 array
detected_lines_images:List[ImageType] = cropImageExtraMargin(straightboxs, img,margin =MARGIN_FACTOR,straight=True)
#self.save_detection(detected_lines_images,prefix = './res/12June_two_Line_')
start_time = time.time()
word_annotations =[]
#viz_word_detection =[]
for uuid, lineimg in zip(line_annotations.keys(),detected_lines_images):
original_coord = line_annotations[uuid].box
xmin, ymin, xmax, ymax = original_coord
original_coord_b = np.array([
[xmin, ymin],
[xmax, ymin],
[xmax, ymax],
[xmin, ymax]
], dtype=np.float32)
#List of 4 x 2
detection_results :List[Wordboxes]= self.wordDetector.predict(lineimg)
input_Word_recog ={}
for wordbox in detection_results:
#So i think cropped_image's expected form is different that what is being returned
#takes in 4x2 array : box
cropped_image= crop_an_Image(wordbox.box,lineimg)
"""
We need to convert coordintes in wordbox.box to the original image
wordbox.box = np.array(wordbox.box)
"""
#original_coord_b :4x2 array
#coord_in_page :4 x 1 array
coord_in_page = self.convert_coordinates(original_coord_b,wordbox.box)
#logger.info("returned coordinate in page ")
#logger.info(coord_in_page)
wordAnn = WordAnnotation(box = coord_in_page, text = None)
word_uuid = wordAnn.index
input_Word_recog[word_uuid]= [cropped_image,wordAnn]
#print("uuid is ")
#print(uuid)
#print(len(line_annotations[uuid].words))
line_annotations[uuid].words.append(wordAnn)
#viz_word_detection.append(cropped_image)
#input_Word_recog contains only word detection
#It is dictionary of annotation id as key, than as values - list of cropped_image and Annotation Instance with key as uuid
word_annotations_in_line = self.textRecognizer.predict(input_Word_recog)
word_annotations.append(word_annotations_in_line)
#self.save_detection(viz_word_detection,prefix = './res/test4/rel_page_')
end_time = time.time()
execution_time = end_time - start_time
logger.info(f"Entire DocTR pipeline: {execution_time} seconds")
return line_annotations