File size: 1,357 Bytes
0b8555e
 
a330b1e
0b8555e
 
 
a330b1e
7500f3a
9fc2a76
 
cd61a6f
ed67e25
9fc2a76
 
 
 
 
 
 
 
 
3b2ce0d
 
cd61a6f
 
3b2ce0d
 
 
cd61a6f
3b2ce0d
477c07b
 
0b8555e
 
 
 
 
 
58c8998
0b8555e
58c8998
 
0b8555e
 
ed67e25
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
from transformers import GPT2LMHeadModel, GPT2Tokenizer
import gradio as gr

# Load the pre-trained GPT2 model and tokenizer
model = GPT2LMHeadModel.from_pretrained("gpt2")
tokenizer = GPT2Tokenizer.from_pretrained("gpt2")

# 設置填充標記 ID
tokenizer.pad_token = tokenizer.eos_token

def generate_command(prompt, max_length=100):
    full_prompt = f"Generate a command for {prompt}:```bash\n"
    inputs = tokenizer.encode(full_prompt, return_tensors="pt")
    
    output = model.generate(
        inputs, 
        max_length=max_length, 
        num_return_sequences=1, 
        temperature=0.7,
        pad_token_id=tokenizer.pad_token_id
    )
    generated_text = tokenizer.decode(output[0], skip_special_tokens=False)
    
    # 提取生成的指令
    start = generated_text.find("```bash") + len("```bash")
    end = generated_text.find("```", start)
    if end == -1:
        end = len(generated_text)
    command = generated_text[start:end].strip()
    
    return command

def predict(input_text):
    output = generate_command(input_text)
    return output

iface = gr.Interface(
    fn=predict,
    inputs=gr.Textbox(lines=2, placeholder="Enter your command generation prompt here..."),
    outputs="text",
    title="Command Generation with GPT2",
    description="Generate bash commands based on your input prompt."
)

iface.launch()