File size: 12,570 Bytes
b875bd7
 
 
3fd0c0d
b875bd7
 
 
3fd0c0d
b875bd7
 
8e15dd6
b875bd7
b54579f
b875bd7
b5a16fb
b875bd7
3fd0c0d
 
b875bd7
fe4ad33
b54579f
 
 
 
 
 
b5a16fb
b54579f
 
 
fe4ad33
8e15dd6
 
b875bd7
 
 
 
 
 
8e15dd6
b875bd7
3fd0c0d
 
 
a9e3d65
 
3fd0c0d
 
8e15dd6
 
 
 
 
 
 
 
b875bd7
3fd0c0d
 
 
b875bd7
3fd0c0d
b875bd7
 
 
 
8e15dd6
eaa3271
5b8ad64
8e15dd6
5b8ad64
8e15dd6
 
 
eaa3271
8e15dd6
 
b875bd7
 
5b8ad64
8e15dd6
5b8ad64
b875bd7
5b8ad64
0e92974
b875bd7
 
 
 
 
d95ac39
 
b875bd7
 
 
 
 
 
 
 
 
 
 
 
 
 
0e92974
b875bd7
3fd0c0d
 
d595ee0
3fd0c0d
82e7a03
3fd0c0d
 
293f468
f8ec1c0
96add20
 
 
 
f8ec1c0
82e7a03
293f468
82e7a03
b875bd7
 
 
 
f8ec1c0
51ff334
3fd0c0d
 
 
 
 
b54579f
 
b875bd7
 
 
 
75b5bd6
b875bd7
 
3fd0c0d
8e15dd6
3ceab46
b875bd7
 
1500087
f8ec1c0
96add20
f8ec1c0
b875bd7
 
 
f8ec1c0
 
 
 
 
 
 
b875bd7
4320db1
f8ec1c0
 
 
18bd94b
f8ec1c0
 
b875bd7
f8ec1c0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0e92974
f8ec1c0
0e92974
f8ec1c0
 
 
 
 
 
 
b5a16fb
f8ec1c0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b5a16fb
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
# coding=utf-8
import os
import re
import argparse
import utils
import commons
import json
import torch
import gradio as gr
from models import SynthesizerTrn
from text import text_to_sequence, _clean_text
from torch import no_grad, LongTensor
import gradio.processing_utils as gr_processing_utils
import logging
from gradio_client import utils as client_utils
logging.getLogger('numba').setLevel(logging.WARNING)
limitation = os.getenv("SYSTEM") == "spaces"  # limit text and audio length in huggingface spaces

hps_ms = utils.get_hparams_from_file(r'config/config.json')
'''
audio_postprocess_ori = gr.Audio.postprocess

def audio_postprocess(self, y):
    data = audio_postprocess_ori(self, y)
    if data is None:
        return None
    return client_utils.encode_url_or_file_to_base64(data.path)


gr.Audio.postprocess = audio_postprocess
'''
def get_text(text, hps, is_symbol):
    text_norm, clean_text = text_to_sequence(text, hps.symbols, [] if is_symbol else hps.data.text_cleaners)
    if hps.data.add_blank:
        text_norm = commons.intersperse(text_norm, 0)
    text_norm = LongTensor(text_norm)
    return text_norm, clean_text

def create_tts_fn(net_g_ms, speaker_id):
    def tts_fn(text, language, noise_scale, noise_scale_w, length_scale, is_symbol):
        text = text.replace('\n', ' ').replace('\r', '').replace(" ", "")
        if limitation:
            text_len = len(re.sub("\[([A-Z]{2})\]", "", text))
            max_len = 100
            if is_symbol:
                max_len *= 3
            if text_len > max_len:
                return "Error: Text is too long", None
        if not is_symbol:
            if language == 0:
                text = f"[ZH]{text}[ZH]"
            elif language == 1:
                text = f"[JA]{text}[JA]"
            else:
                text = f"{text}"
        stn_tst, clean_text = get_text(text, hps_ms, is_symbol)
        with no_grad():
            x_tst = stn_tst.unsqueeze(0).to(device)
            x_tst_lengths = LongTensor([stn_tst.size(0)]).to(device)
            sid = LongTensor([speaker_id]).to(device)
            audio = net_g_ms.infer(x_tst, x_tst_lengths, sid=sid, noise_scale=noise_scale, noise_scale_w=noise_scale_w,
                                   length_scale=length_scale)[0][0, 0].data.cpu().float().numpy()

        return "Success", (22050, audio)
    return tts_fn

def create_to_symbol_fn(hps):
    def to_symbol_fn(is_symbol_input, input_text, temp_lang):
        if temp_lang == 0:
            clean_text = f'[ZH]{input_text}[ZH]'
        elif temp_lang == 1:
            clean_text = f'[JA]{input_text}[JA]'
        else:
            clean_text = input_text
        return _clean_text(clean_text, hps.data.text_cleaners) if is_symbol_input else ''

    return to_symbol_fn
def change_lang(language):
    if language == 0:
        return 0.6, 0.668, 1.2
    elif language == 1:
        return 0.6, 0.668, 1
    else:
        return 0.6, 0.668, 1
'''
download_audio_js = """
() =>{{
    let root = document.querySelector("body > gradio-app");
    if (root.shadowRoot != null)
        root = root.shadowRoot;
    let audio = root.querySelector("#tts-audio-{audio_id}").querySelector("audio");
    let text = root.querySelector("#input-text-{audio_id}").querySelector("textarea");
    if (audio == undefined)
        return;
    text = text.value;
    if (text == undefined)
        text = Math.floor(Math.random()*100000000);
    audio = audio.src;
    let oA = document.createElement("a");
    oA.download = text.substr(0, 20)+'.wav';
    oA.href = audio;
    document.body.appendChild(oA);
    oA.click();
    oA.remove();
}}
"""
'''
if __name__ == '__main__':
    parser = argparse.ArgumentParser()
    parser.add_argument('--device', type=str, default='cpu')
    parser.add_argument('--api', action="store_true", default=False)
    parser.add_argument("--share", action="store_true", default=False, help="share gradio app")
    parser.add_argument("--all", action="store_true", default=False, help="enable all models")
    args = parser.parse_args()
    device = torch.device(args.device)
    categories = ["Honkai: Star Rail", "Blue Archive", "Lycoris Recoil"]
    others = {
        "Princess Connect! Re:Dive": "https://huggingface.co/spaces/sayashi/vits-models-pcr",
        "Genshin Impact": "https://huggingface.co/spaces/sayashi/vits-models-genshin-bh3",
        "Honkai Impact 3rd": "https://huggingface.co/spaces/sayashi/vits-models-genshin-bh3",
        "Overwatch 2": "https://huggingface.co/spaces/sayashi/vits-models-ow2",
    }
    if args.all:
        categories = ["Honkai: Star Rail", "Blue Archive", "Lycoris Recoil", "Princess Connect! Re:Dive", "Genshin Impact", "Honkai Impact 3rd", "Overwatch 2"]
        others = {}
    models = []
    with open("pretrained_models/info.json", "r", encoding="utf-8") as f:
        models_info = json.load(f)
    for i, info in models_info.items():
        if info['title'].split("-")[0] not in categories or not info['enable']:
            continue
        sid = info['sid']
        name_en = info['name_en']
        name_zh = info['name_zh']
        title = info['title']
        cover = f"pretrained_models/{i}/{info['cover']}"
        example = info['example']
        language = info['language']
        net_g_ms = SynthesizerTrn(
            len(hps_ms.symbols),
            hps_ms.data.filter_length // 2 + 1,
            hps_ms.train.segment_size // hps_ms.data.hop_length,
            n_speakers=hps_ms.data.n_speakers if info['type'] == "multi" else 0,
            **hps_ms.model)
        utils.load_checkpoint(f'pretrained_models/{i}/{i}.pth', net_g_ms, None)
        _ = net_g_ms.eval().to(device)
        models.append((sid, name_en, name_zh, title, cover, example, language, net_g_ms, create_tts_fn(net_g_ms, sid), create_to_symbol_fn(hps_ms)))
    with gr.Blocks(delete_cache=(60*60*24, 60*60*24)) as app:
        gr.Markdown(
            "# <center> vits-models\n"
            "## <center> Please do not generate content that could infringe upon the rights or cause harm to individuals or organizations.\n"
            "[![image](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/drive/10QOk9NPgoKZUXkIhhuVaZ7SYra1MPMKH?usp=share_link)\n\n"
            "[![Duplicate this Space](https://huggingface.co/datasets/huggingface/badges/raw/main/duplicate-this-space-sm-dark.svg)](https://huggingface.co/spaces/sayashi/vits-models?duplicate=true)\n\n"
            "[![Finetune your own model](https://badgen.net/badge/icon/github?icon=github&label=Finetune%20your%20own%20model)](https://github.com/SayaSS/vits-finetuning)"
        )

        with gr.Tabs():
            for category in categories:
                with gr.TabItem(category):
                    with gr.TabItem("EN"):
                        for (sid, name_en, name_zh, title, cover, example, language, net_g_ms, tts_fn, to_symbol_fn) in models:
                            if title.split("-")[0] != category:
                                continue
                            with gr.TabItem(name_en):
                                with gr.Row():
                                    image_cover = client_utils.encode_url_or_file_to_base64(cover)
                                    gr.Markdown(
                                        '<div align="center">'
                                        f'<a><strong>{title}</strong></a>'
                                        f'<img style="width:auto;height:300px;" src="{image_cover}">' if cover else ""
                                        '</div>'
                                    )
                                with gr.Row():
                                    with gr.Column():
                                        input_text = gr.Textbox(label="Text (100 words limitation)" if limitation else "Text", lines=5, value=example, elem_id=f"input-text-en-{name_en.replace(' ','')}")
                                        lang = gr.Dropdown(label="Language", choices=["Chinese", "Japanese", "Mix(wrap the Chinese text with [ZH][ZH], wrap the Japanese text with [JA][JA])"],
                                                    type="index", value=language)
                                        with gr.Accordion(label="Advanced Options", open=False):
                                            symbol_input = gr.Checkbox(value=False, label="Symbol input")
                                            symbol_list = gr.Dataset(label="Symbol list", components=[input_text],
                                                                     samples=[[x] for x in hps_ms.symbols])
                                            symbol_list_json = gr.Json(value=hps_ms.symbols, visible=False)
                                        btn = gr.Button(value="Generate", variant="primary")
                                        with gr.Row():
                                            ns = gr.Slider(label="noise_scale", minimum=0.1, maximum=1.0, step=0.1, value=0.6, interactive=True)
                                            nsw = gr.Slider(label="noise_scale_w", minimum=0.1, maximum=1.0, step=0.1, value=0.668, interactive=True)
                                            ls = gr.Slider(label="length_scale", minimum=0.1, maximum=2.0, step=0.1, value=1.2 if language=="Chinese" else 1, interactive=True)
                                    with gr.Column():
                                        o1 = gr.Textbox(label="Output Message")
                                        o2 = gr.Audio(label="Output Audio", elem_id=f"tts-audio-en-{name_en.replace(' ','')}")
                                        #download = gr.Button("Download Audio")
                                    btn.click(tts_fn, inputs=[input_text, lang,  ns, nsw, ls, symbol_input], outputs=[o1, o2], api_name=f"tts-{name_en}")
                                    #download.click(None, [], [], js=download_audio_js.format(audio_id=f"en-{name_en.replace(' ', '')}"))
                                    lang.change(change_lang, inputs=[lang], outputs=[ns, nsw, ls])
                                    symbol_input.change(
                                        to_symbol_fn,
                                        [symbol_input, input_text, lang],
                                        [input_text]
                                    )
                                    symbol_list.click(None, [symbol_list, symbol_list_json], [input_text],
                                                      js=f"""
                                    (i,symbols) => {{
                                        let root = document.querySelector("body > gradio-app");
                                        if (root.shadowRoot != null)
                                            root = root.shadowRoot;
                                        let text_input = root.querySelector("#input-text-en-{name_en.replace(' ', '')}").querySelector("textarea");
                                        let startPos = text_input.selectionStart;
                                        let endPos = text_input.selectionEnd;
                                        let oldTxt = text_input.value;
                                        let result = oldTxt.substring(0, startPos) + symbols[i] + oldTxt.substring(endPos);
                                        text_input.value = result;
                                        let x = window.scrollX, y = window.scrollY;
                                        text_input.focus();
                                        text_input.selectionStart = startPos + symbols[i].length;
                                        text_input.selectionEnd = startPos + symbols[i].length;
                                        text_input.blur();
                                        window.scrollTo(x, y);
                                        return text_input.value;
                                    }}""")
            for category, link in others.items():
                with gr.TabItem(category):
                    gr.Markdown(
                        f'''
                        <center>
                          <h2>Click to Go</h2>
                          <a href="{link}">
                            <img src="https://huggingface.co/datasets/huggingface/badges/raw/main/open-in-hf-spaces-xl-dark.svg"
                          </a>
                        </center>
                        '''
                    )
    app.queue(default_concurrency_limit=1, api_open=args.api).launch(share=args.share)