File size: 21,303 Bytes
035fa04
 
 
 
 
 
 
 
 
795f8d5
 
035fa04
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
795f8d5
 
 
 
 
 
 
 
035fa04
795f8d5
 
 
 
 
 
 
035fa04
795f8d5
035fa04
795f8d5
 
 
 
 
 
 
 
 
 
 
 
 
 
035fa04
0970c78
795f8d5
 
 
 
 
 
 
 
 
 
 
035fa04
 
 
795f8d5
 
 
035fa04
795f8d5
 
 
035fa04
795f8d5
 
 
 
 
0970c78
035fa04
 
 
795f8d5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0970c78
035fa04
 
 
 
 
 
 
 
795f8d5
035fa04
795f8d5
035fa04
 
795f8d5
 
 
 
 
 
 
 
035fa04
 
 
795f8d5
 
 
 
 
035fa04
 
795f8d5
 
035fa04
0970c78
035fa04
 
 
0970c78
 
 
 
 
 
 
 
795f8d5
 
 
 
 
0970c78
035fa04
795f8d5
 
0970c78
035fa04
795f8d5
 
 
035fa04
 
0970c78
035fa04
 
 
0970c78
795f8d5
 
 
0970c78
035fa04
0970c78
035fa04
0970c78
035fa04
795f8d5
 
035fa04
795f8d5
0970c78
035fa04
 
 
0970c78
 
 
 
 
 
 
 
795f8d5
 
 
 
 
0970c78
035fa04
795f8d5
 
0970c78
035fa04
795f8d5
 
 
035fa04
 
0970c78
795f8d5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
035fa04
 
795f8d5
035fa04
795f8d5
 
 
 
 
 
 
 
 
 
035fa04
795f8d5
 
 
 
 
 
 
 
035fa04
795f8d5
 
 
035fa04
0970c78
795f8d5
 
 
035fa04
 
795f8d5
 
 
 
 
 
 
 
 
 
 
 
 
035fa04
795f8d5
035fa04
795f8d5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
035fa04
0970c78
035fa04
 
 
795f8d5
035fa04
0970c78
035fa04
 
795f8d5
035fa04
 
795f8d5
 
 
035fa04
 
0970c78
 
035fa04
 
795f8d5
035fa04
 
 
0970c78
035fa04
 
 
 
795f8d5
035fa04
795f8d5
035fa04
0970c78
035fa04
 
795f8d5
035fa04
 
795f8d5
035fa04
795f8d5
 
035fa04
795f8d5
 
035fa04
0970c78
795f8d5
035fa04
795f8d5
035fa04
795f8d5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
035fa04
0970c78
 
035fa04
 
795f8d5
035fa04
 
 
 
 
 
 
 
795f8d5
035fa04
0970c78
035fa04
 
 
0970c78
 
 
 
 
 
 
 
795f8d5
 
 
0970c78
035fa04
0970c78
035fa04
0970c78
035fa04
795f8d5
 
0970c78
035fa04
0970c78
795f8d5
 
0970c78
795f8d5
 
035fa04
 
795f8d5
035fa04
 
 
 
0970c78
035fa04
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0970c78
 
035fa04
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
import psycopg2
from psycopg2.extras import RealDictCursor
import re
import json
from typing import List, Dict, Any, Optional, Union
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.metrics.pairwise import cosine_similarity
import numpy as np
from pydantic import BaseModel, Field
from bs4 import BeautifulSoup
import math

class TourRecommendationRequest(BaseModel):
    user_id: Optional[int] = Field(None)
    tour_id: Optional[int] = Field(None)
    limit: int = Field(3, ge=1, le=10)

class TourSummary(BaseModel):
    tour_id: int
    title: str
    duration: Optional[str] = None
    departure_location: Optional[str] = None
    destination: Optional[List[str]] = None
    region: Optional[int] = None
    description: Optional[str] = None
    similarity_score: Optional[float] = None

class TourRecommendationResponse(BaseModel):
    recommendations: List[TourSummary]

class ContentBasedRecommender:
    def __init__(self, conn):
        self.conn = conn
        vietnamese_stop_words = [
            "và", "là", "của", "trong", "được", "có", "không", "cho", "với", 
            "tại", "bằng", "để", "này", "khi", "một", "những", "các", "đã", 
            "rồi", "lại", "nếu", "vì", "thì", "từ", "ra", "đến", "trên", "dưới",
            "quý", "khách", "tham", "quan", "du", "lịch", "tour", "ngày", "đêm",
            "ăn", "sáng", "trưa", "tối", "nghỉ", "khách", "sạn", "tự", "túc"
        ]
        
        self.vectorizer = TfidfVectorizer(
            max_features=8000,
            stop_words=vietnamese_stop_words,
            ngram_range=(1, 3),
            min_df=1,
            max_df=0.8,
            token_pattern=r'[a-zA-ZÀ-ỹ]+',
            lowercase=True
        )
        
        self.field_weights = {
            'title': 0.20,
            'destination': 0.30,
            'description': 0.15,
            'departure_location': 0.10,
            'region': 0.15,
            'itinerary': 0.10,
            'duration': 0.05,
            'attractions': 0.15
        }
        
        self.region_proximity = {
            1: {1: 1.0, 2: 0.6, 3: 0.3},
            2: {1: 0.6, 2: 1.0, 3: 0.7},
            3: {1: 0.3, 2: 0.7, 3: 1.0}
        }

    def clean_html(self, text):
        if not text:
            return ""
        try:
            soup = BeautifulSoup(text, 'html.parser')
            clean_text = soup.get_text()
            clean_text = re.sub(r'\s+', ' ', clean_text).strip()
            return clean_text
        except:
            return str(text)

    def preprocess_text(self, text):
        if not text:
            return ""
        
        text = self.clean_html(text)
        
        text = str(text).lower()
        
        text = re.sub(r'[^\w\sÀ-ỹ]', ' ', text)
        
        text = re.sub(r'\s+', ' ', text).strip()
        
        words = text.split()
        words = [word for word in words if len(word) >= 2]
        
        return " ".join(words)

    def preprocess_list(self, items):
        if not items:
            return ""
        processed_items = []
        for item in items:
            cleaned = self.preprocess_text(item)
            if cleaned:
                processed_items.append(cleaned)
        return " ".join(processed_items)

    def extract_attractions_from_itinerary(self, itinerary):
        if not itinerary:
            return ""
        
        try:
            if isinstance(itinerary, str):
                data = json.loads(itinerary)
            else:
                data = itinerary
            
            attractions = []
            
            if isinstance(data, list):
                for day in data:
                    if isinstance(day, dict):
                        description = day.get('description', '')
                        if description:
                            clean_desc = self.clean_html(description)
                            soup = BeautifulSoup(description, 'html.parser')
                            strong_tags = soup.find_all('strong')
                            for tag in strong_tags:
                                attractions.append(tag.get_text())
                            
                            colored_spans = soup.find_all('span', style=lambda x: x and 'color' in x)
                            for span in colored_spans:
                                attractions.append(span.get_text())
            
            clean_attractions = []
            for attraction in attractions:
                cleaned = self.preprocess_text(attraction)
                if cleaned and len(cleaned) > 3:
                    clean_attractions.append(cleaned)
            
            return " ".join(clean_attractions)
            
        except Exception as e:
            print(f"Error extracting attractions: {e}")
            return ""

    def preprocess_json(self, json_data):
        if not json_data:
            return ""
        try:
            if isinstance(json_data, str):
                data = json.loads(json_data)
            else:
                data = json_data
            
            text_values = []
            
            def extract_values(obj):
                if isinstance(obj, dict):
                    for key, val in obj.items():
                        if key.lower() in ['title', 'description', 'name', 'location']:
                            if val:
                                clean_val = self.clean_html(str(val))
                                if clean_val:
                                    text_values.append(clean_val)
                        else:
                            extract_values(val)
                elif isinstance(obj, list):
                    for item in obj:
                        extract_values(item)
                elif obj and len(str(obj)) > 3:
                    clean_val = self.clean_html(str(obj))
                    if clean_val:
                        text_values.append(clean_val)
            
            extract_values(data)
            return " ".join(text_values)
        except Exception as e:
            print(f"Error preprocessing JSON: {e}")
            return ""

    def get_all_tours(self):
        with self.conn.cursor(cursor_factory=RealDictCursor) as cursor:
            cursor.execute("""
                SELECT
                    t.tour_id,
                    t.title,
                    t.duration,
                    t.departure_location,
                    t.description,
                    t.destination,
                    t.region,
                    t.itinerary,
                    t.max_participants,
                    MIN(d.price_adult) as min_price,
                    MAX(d.price_adult) as max_price,
                    AVG(d.price_adult) as avg_price
                FROM
                    Tour t
                LEFT JOIN
                    Departure d ON t.tour_id = d.tour_id AND d.availability = true
                WHERE
                    t.availability = true
                GROUP BY
                    t.tour_id, t.title, t.duration, t.departure_location, 
                    t.description, t.destination, t.region, t.itinerary, t.max_participants
            """)
            return cursor.fetchall()

    def get_user_history(self, user_id):
        with self.conn.cursor(cursor_factory=RealDictCursor) as cursor:
            cursor.execute("""
                SELECT
                    h.tour_id,
                    COUNT(*) as interaction_count,
                    MAX(h.timestamp) as last_interaction
                FROM
                    History h
                WHERE
                    h.user_id = %s
                GROUP BY
                    h.tour_id
                ORDER BY
                    interaction_count DESC, last_interaction DESC
            """, (user_id,))
            return cursor.fetchall()

    def get_tour_by_id(self, tour_id):
        with self.conn.cursor(cursor_factory=RealDictCursor) as cursor:
            cursor.execute("""
                SELECT
                    t.tour_id,
                    t.title,
                    t.duration,
                    t.departure_location,
                    t.description,
                    t.destination,
                    t.region,
                    t.itinerary,
                    t.max_participants,
                    MIN(d.price_adult) as min_price,
                    MAX(d.price_adult) as max_price,
                    AVG(d.price_adult) as avg_price
                FROM
                    Tour t
                LEFT JOIN
                    Departure d ON t.tour_id = d.tour_id AND d.availability = true
                WHERE
                    t.tour_id = %s
                GROUP BY
                    t.tour_id, t.title, t.duration, t.departure_location, 
                    t.description, t.destination, t.region, t.itinerary, t.max_participants
            """, (tour_id,))
            return cursor.fetchone()

    def extract_duration_days(self, duration):
        if not duration:
            return 0
        
        numbers = re.findall(r'\d+', duration)
        if numbers:
            return int(numbers[0])
        return 0

    def calculate_price_similarity(self, price1, price2):
        if not price1 or not price2:
            return 0.5
        
        price1 = float(price1)
        price2 = float(price2)
        
        max_price = max(price1, price2)
        min_price = min(price1, price2)
        
        if max_price == 0:
            return 1.0
        
        ratio = min_price / max_price
        return ratio

    def create_tour_features(self, tours):
        tour_features = {}
        
        for tour in tours:
            title = self.preprocess_text(tour.get('title', ''))
            description = self.preprocess_text(tour.get('description', ''))
            departure_location = self.preprocess_text(tour.get('departure_location', ''))
            destination = self.preprocess_list(tour.get('destination', []))
            region = self.preprocess_text(str(tour.get('region', '')))
            duration = self.preprocess_text(tour.get('duration', ''))
            
            itinerary = self.preprocess_json(tour.get('itinerary'))
            attractions = self.extract_attractions_from_itinerary(tour.get('itinerary'))
            
            combined_features = (
                f"{title} " * int(self.field_weights['title'] * 20) +
                f"{destination} " * int(self.field_weights['destination'] * 20) +
                f"{description} " * int(self.field_weights['description'] * 20) +
                f"{departure_location} " * int(self.field_weights['departure_location'] * 20) +
                f"{region} " * int(self.field_weights['region'] * 20) +
                f"{itinerary} " * int(self.field_weights['itinerary'] * 20) +
                f"{duration} " * int(self.field_weights['duration'] * 20) +
                f"{attractions} " * int(self.field_weights['attractions'] * 20)
            )
            
            tour_features[tour['tour_id']] = combined_features.strip()
        
        return tour_features

    def calculate_enhanced_similarity(self, tours):
        tour_features = self.create_tour_features(tours)
        
        tour_ids = list(tour_features.keys())
        feature_texts = [tour_features[tour_id] for tour_id in tour_ids]
        
        if not feature_texts or all(not text.strip() for text in feature_texts):
            return {}
        
        try:
            tfidf_matrix = self.vectorizer.fit_transform(feature_texts)
            text_similarity = cosine_similarity(tfidf_matrix, tfidf_matrix)
        except Exception as e:
            print(f"Error in TF-IDF calculation: {e}")
            return {}
        
        tour_lookup = {tour['tour_id']: tour for tour in tours}
        
        similarity_dict = {}
        
        for i, tour_id in enumerate(tour_ids):
            similarity_dict[tour_id] = {}
            tour_i = tour_lookup[tour_id]
            
            for j, other_tour_id in enumerate(tour_ids):
                if i == j:
                    continue
                
                tour_j = tour_lookup[other_tour_id]
                
                text_sim = text_similarity[i][j]
                
                region_i = tour_i.get('region', 1)
                region_j = tour_j.get('region', 1)
                region_sim = self.region_proximity.get(region_i, {}).get(region_j, 0.3)
                
                duration_i = self.extract_duration_days(tour_i.get('duration'))
                duration_j = self.extract_duration_days(tour_j.get('duration'))
                duration_sim = 1.0 if duration_i == duration_j else 0.7 if abs(duration_i - duration_j) <= 1 else 0.3
                
                price_i = tour_i.get('avg_price')
                price_j = tour_j.get('avg_price')
                price_sim = self.calculate_price_similarity(price_i, price_j)
                
                final_similarity = (
                    text_sim * 0.6 +
                    region_sim * 0.2 +
                    duration_sim * 0.1 +
                    price_sim * 0.1
                )
                
                similarity_dict[tour_id][other_tour_id] = final_similarity
        
        return similarity_dict

    def recommend_similar_tours(self, tour_id, limit=3):
        all_tours = self.get_all_tours()
        target_tour = None
        
        for tour in all_tours:
            if tour.get('tour_id') == tour_id:
                target_tour = tour
                break
        
        if not target_tour:
            return []
        
        similarity_dict = self.calculate_enhanced_similarity(all_tours)
        
        if tour_id in similarity_dict:
            similar_tours = sorted(
                similarity_dict[tour_id].items(),
                key=lambda x: x[1],
                reverse=True
            )[:limit]
            
            recommended_tours = []
            for similar_tour_id, similarity_score in similar_tours:
                for tour in all_tours:
                    if tour.get('tour_id') == similar_tour_id:
                        tour_copy = dict(tour)
                        tour_copy['similarity_score'] = float(similarity_score)
                        recommended_tours.append(tour_copy)
                        break
            
            return recommended_tours
        
        return []

    def recommend_for_user(self, user_id, limit=3):
        user_history = self.get_user_history(user_id)
        
        if not user_history:
            return self.recommend_popular_tours(limit)
        
        all_tours = self.get_all_tours()
        similarity_dict = self.calculate_enhanced_similarity(all_tours)
        
        tour_scores = {}
        total_interactions = sum(h['interaction_count'] for h in user_history)
        
        for tour in all_tours:
            tour_id = tour.get('tour_id')
            if tour_id is None or any(h['tour_id'] == tour_id for h in user_history):
                continue
            
            total_similarity = 0
            total_weight = 0
            
            for history_item in user_history:
                history_tour_id = history_item['tour_id']
                interaction_weight = history_item['interaction_count'] / total_interactions
                
                if (history_tour_id in similarity_dict and 
                    tour_id in similarity_dict[history_tour_id]):
                    
                    similarity = similarity_dict[history_tour_id][tour_id]
                    total_similarity += similarity * interaction_weight
                    total_weight += interaction_weight
            
            if total_weight > 0:
                tour_scores[tour_id] = total_similarity / total_weight
        
        user_regions = set()
        for history_item in user_history:
            for tour in all_tours:
                if tour['tour_id'] == history_item['tour_id']:
                    user_regions.add(tour.get('region'))
                    break
        
        for tour_id, score in tour_scores.items():
            for tour in all_tours:
                if tour['tour_id'] == tour_id:
                    if tour.get('region') not in user_regions:
                        tour_scores[tour_id] = score * 1.1
                    break
        
        top_tours = sorted(
            tour_scores.items(),
            key=lambda x: x[1],
            reverse=True
        )[:limit]
        
        recommended_tours = []
        for tour_id, similarity_score in top_tours:
            for tour in all_tours:
                if tour['tour_id'] == tour_id:
                    tour_copy = dict(tour)
                    tour_copy['similarity_score'] = float(similarity_score)
                    recommended_tours.append(tour_copy)
                    break
        
        return recommended_tours

    def recommend_popular_tours(self, limit=3):
        with self.conn.cursor(cursor_factory=RealDictCursor) as cursor:
            cursor.execute("""
                SELECT
                    t.tour_id,
                    t.title,
                    t.duration,
                    t.departure_location,
                    t.description,
                    t.destination,
                    t.region,
                    COUNT(DISTINCT b.booking_id) as booking_count,
                    AVG(r.average_rating) as avg_rating,
                    COUNT(DISTINCT r.review_id) as review_count
                FROM
                    Tour t
                LEFT JOIN
                    Departure d ON t.tour_id = d.tour_id
                LEFT JOIN
                    Booking b ON d.departure_id = b.departure_id
                LEFT JOIN
                    Review r ON t.tour_id = r.tour_id
                WHERE
                    t.availability = true
                GROUP BY
                    t.tour_id, t.title, t.duration, t.departure_location,
                    t.description, t.destination, t.region
                ORDER BY
                    (COUNT(DISTINCT b.booking_id) * 0.6 + 
                     COALESCE(AVG(r.average_rating), 3.0) * COUNT(DISTINCT r.review_id) * 0.4) DESC
                LIMIT %s
            """, (limit,))
            
            popular_tours = cursor.fetchall()
            for tour in popular_tours:
                tour['similarity_score'] = None
            return popular_tours

    def get_recommendations(self, user_id=None, tour_id=None, limit=3):
        if tour_id:
            return self.recommend_similar_tours(tour_id, limit)
        elif user_id:
            return self.recommend_for_user(user_id, limit)
        else:
            return self.recommend_popular_tours(limit)

def get_db_connection():
    try:
        from src.database import conn_pool
        return conn_pool.getconn()
    except Exception as e:
        print(f"Error getting connection from pool: {e}")
        try:
            try:
                from src.config import DB_USER, DB_PASSWORD, DB_HOST, DB_PORT, DB_NAME
                conn = psycopg2.connect(
                    user=DB_USER,
                    password=DB_PASSWORD,
                    host=DB_HOST,
                    port=DB_PORT,
                    dbname=DB_NAME
                )
            except ImportError:
                import os
                conn = psycopg2.connect(
                    user=os.getenv("DB_USER"),
                    password=os.getenv("DB_PASSWORD"),
                    host=os.getenv("DB_HOST"),
                    port=os.getenv("DB_PORT"),
                    dbname=os.getenv("DB_NAME")
                )
            return conn
        except Exception as e2:
            print(f"Error creating direct connection: {e2}")
            raise

def return_db_connection(conn):
    try:
        from src.database import conn_pool
        conn_pool.putconn(conn)
    except Exception as e:
        print(f"Error returning connection to pool: {e}")
        try:
            conn.close()
        except:
            pass

def convert_to_tour_summary(tour):
    return TourSummary(
        tour_id=tour.get('tour_id'),
        title=tour.get('title', ''),
        duration=tour.get('duration'),
        departure_location=tour.get('departure_location'),
        destination=tour.get('destination'),
        region=tour.get('region'),
        description=tour.get('description'),
        similarity_score=tour.get('similarity_score')
    )

def get_tour_recommendations(user_id=None, tour_id=None, limit=3):
    conn = None
    try:
        conn = get_db_connection()
        recommender = ContentBasedRecommender(conn)
        recommended_tours = recommender.get_recommendations(user_id, tour_id, limit)
        tour_summaries = [convert_to_tour_summary(tour) for tour in recommended_tours]
        response = TourRecommendationResponse(
            recommendations=tour_summaries,
            recommendation_type="content-based"
        )
        return response
    except Exception as e:
        print(f"Error getting recommendations: {e}")
        raise
    finally:
        if conn:
            return_db_connection(conn)