File size: 17,841 Bytes
8362bbb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
import copy
import random

# typing 
from typing import List, Tuple
import time
import torch

# TODO
# from transformers import LlamaTokenizer
# tokenizer=LlamaTokenizer.from_pretrained("/home/lyh/weights/hf/vicuna_v13/7B/")

TOPK = 10  # topk for sparse tree

from transformers.generation.logits_process import (
    LogitsProcessorList,
    RepetitionPenaltyLogitsProcessor,
    TemperatureLogitsWarper,
    TopKLogitsWarper,
    TopPLogitsWarper,
)


class Timer:
    def __init__(self,name):
        self.name = name
    def __enter__(self):
        torch.cuda.synchronize()
        self.start = time.perf_counter()


    def __exit__(self, exc_type, exc_value, traceback):
        torch.cuda.synchronize()
        elapsed = time.perf_counter() - self.start
        print(f'{self.name} took {elapsed} seconds')


def prepare_logits_processor(
        temperature: float = 0.0,
        repetition_penalty: float = 0.0,
        top_p: float = 0.0,
        top_k: int = 0
) -> LogitsProcessorList:
    processor_list = LogitsProcessorList()
    if temperature > 1e-5:
        if temperature >= 1e-5 and temperature != 1.0:
            processor_list.append(TemperatureLogitsWarper(temperature))
        if repetition_penalty > 1.0:
            processor_list.append(RepetitionPenaltyLogitsProcessor(repetition_penalty))
        if 1e-8 <= top_p < 1.0:
            processor_list.append(TopPLogitsWarper(top_p))
        if top_k > 0:
            processor_list.append(TopKLogitsWarper(top_k))
        return processor_list


# test_processor = prepare_logits_processor(
#         0.0, 0.0, -1, 1
#     )


def pad_path(path: List[int], length: int, pad_value: int = -2) -> List[int]:
    """
    Pad the given path list with a specific value up to a specified length.

    Parameters:
    - path (list): The original list that needs padding.
    - length (int): The desired length of the padded list.
    - pad_value (optional, default=-2): The value to use for padding.

    Returns:
    - list: A new list based on the original path but padded to the desired length.

    Example:
    >>> pad_path([1,2,3], 5)
    [1, 2, 3, -2, -2]

    Note:
    If the given path is already longer than the specified length,
    then no padding occurs, and the original path is returned.
    """

    # Calculate the number of padding values needed by subtracting the length
    # of the path from the desired length.
    # Append the padding values to the original path and return the new list.
    return path + [pad_value] * (length - len(path))


def generate_tree_buffers(tree_choices, device="cuda"):
    def custom_sort(lst):
        # sort_keys=[len(list)]
        sort_keys = []
        for i in range(len(lst)):
            sort_keys.append(lst[i] if lst[i] >= 0 else maxitem)
        return sort_keys
    with Timer("sort"):

        sorted_tree_choices = sorted(tree_choices, key=lambda x: (len(x), x))
        tree_len = len(sorted_tree_choices) + 1

    # Initialize depth_counts to keep track of how many choices have a particular depth
        depth_counts = []
        prev_depth = 0
        for path in sorted_tree_choices:
            depth = len(path)
            if depth != prev_depth:
                depth_counts.append(0)
            depth_counts[depth - 1] += 1
            prev_depth = depth

        tree_attn_mask = torch.eye(tree_len, tree_len)
        tree_attn_mask[:, 0] = 1
        start = 0
        for i in range(len(depth_counts)):
            for j in range(depth_counts[i]):
                cur_tree_choice = sorted_tree_choices[start + j]
                # retrieve ancestor position
                if len(cur_tree_choice) == 1:
                    continue
                ancestor_idx = []
                for c in range(len(cur_tree_choice) - 1):
                    ancestor_idx.append(sorted_tree_choices.index(cur_tree_choice[:c + 1]) + 1)
                tree_attn_mask[j + start + 1, ancestor_idx] = 1
            start += depth_counts[i]

        tree_indices = torch.zeros(tree_len, dtype=torch.long)
        p_indices = [0 for _ in range(tree_len - 1)]
        b_indices = [[] for _ in range(tree_len - 1)]
        tree_indices[0] = 0
        start = 0
        bias = 0
        for i in range(len(depth_counts)):
            inlayer_bias = 0
            b = []
            for j in range(depth_counts[i]):
                cur_tree_choice = sorted_tree_choices[start + j]
                cur_parent = cur_tree_choice[:-1]
                if j != 0:
                    if cur_parent != parent:
                        bias += 1
                        inlayer_bias += 1
                        parent = cur_parent
                        b = []
                else:
                    parent = cur_parent
                tree_indices[start + j + 1] = cur_tree_choice[-1] + TOPK * (i + bias) + 1
                p_indices[start + j] = inlayer_bias
                if len(b) > 0:
                    b_indices[start + j] = copy.deepcopy(b)
                else:
                    b_indices[start + j] = []
                b.append(cur_tree_choice[-1] + TOPK * (i + bias) + 1)
            start += depth_counts[i]

        p_indices = [-1] + p_indices
        tree_position_ids = torch.zeros(tree_len, dtype=torch.long)
        start = 0
        for i in range(len(depth_counts)):
            tree_position_ids[start + 1: start + depth_counts[i] + 1] = i + 1
            start += depth_counts[i]

        retrieve_indices_nest = []
        retrieve_paths = []
        for i in range(len(sorted_tree_choices)):
            cur_tree_choice = sorted_tree_choices[-i - 1]
            retrieve_indice = []
            if cur_tree_choice in retrieve_paths:
                continue
            else:
                for c in range(len(cur_tree_choice)):
                    retrieve_indice.append(sorted_tree_choices.index(cur_tree_choice[:c + 1]))
                    retrieve_paths.append(cur_tree_choice[:c + 1])
            retrieve_indices_nest.append(retrieve_indice)
        max_length = max([len(x) for x in retrieve_indices_nest])
        retrieve_indices = [pad_path(path, max_length) for path in retrieve_indices_nest]
        retrieve_indices = torch.tensor(retrieve_indices, dtype=torch.long)
        retrieve_indices = retrieve_indices + 1
        retrieve_indices = torch.cat([torch.zeros((retrieve_indices.shape[0], 1), dtype=torch.long), retrieve_indices],
                                     dim=1)

        maxitem = retrieve_indices.max().item() + 5



        retrieve_indices = retrieve_indices.tolist()
        retrieve_indices = sorted(retrieve_indices, key=custom_sort)
        retrieve_indices = torch.tensor(retrieve_indices, dtype=torch.long)



    # Aggregate the generated buffers into a dictionary
    tree_buffers = {
        "tree_attn_mask": tree_attn_mask.unsqueeze(0).unsqueeze(0),
        "tree_indices": tree_indices,
        "tree_position_ids": tree_position_ids,
        "retrieve_indices": retrieve_indices,
    }

    # Move the tensors in the dictionary to the specified device
    tree_buffers = {
        k: v.clone().to(device)
        if isinstance(v, torch.Tensor)
        else torch.tensor(v, device=device)
        for k, v in tree_buffers.items()
    }

    return tree_buffers


def initialize_tree0(input_ids, model, past_key_values, logits_processor):
    draft_tokens, retrieve_indices,tree_mask,tree_position_ids, outputs, logits, hidden_state, sample_token = model(
        input_ids, past_key_values=past_key_values, output_orig=True, logits_processor=logits_processor
    )

    #     if logits_processor is not None:
    #         logits = orig[:, -1]
    #         logits = logits_processor(None, logits)
    #         probabilities = torch.nn.functional.softmax(logits, dim=1)
    #         token = torch.multinomial(probabilities, 1)
    #     else:
    #         token = torch.argmax(orig[:, -1])
    #         token = token[None, None]
    #     input_ids = torch.cat((input_ids, token.to(input_ids.device)), dim=1)
    #     # Clone the output hidden states
    #
    #     draft_tokens, retrieve_indices,tree_mask,tree_position_ids = self.ea_layer.topK_genrate(hidden_states, input_ids, self.base_model.lm_head)
    #     if output_orig:
    #         return draft_tokens, retrieve_indices,tree_mask,tree_position_ids, outputs, orig, hidden_states, token
    #     return draft_tokens, retrieve_indices,tree_mask,tree_position_ids, hidden_states, token
    return draft_tokens, retrieve_indices,tree_mask,tree_position_ids, logits, hidden_state, sample_token

def initialize_tree(input_ids, model, past_key_values, logits_processor):
    outputs, orig, hidden_states = model(
        input_ids, past_key_values=past_key_values, output_orig=True
    )

    if logits_processor is not None:
        logits = orig[:, -1]
        logits = logits_processor(None, logits)
        probabilities = torch.nn.functional.softmax(logits, dim=1)
        token = torch.multinomial(probabilities, 1)
    else:
        token = torch.argmax(orig[:, -1])
        token = token[None, None]
    input_ids = torch.cat((input_ids, token.to(input_ids.device)), dim=1)
    # Clone the output hidden states

    draft_tokens, retrieve_indices,tree_mask,tree_position_ids = model.ea_layer.topK_genrate(hidden_states, input_ids, model.base_model.lm_head,logits_processor)
    return draft_tokens, retrieve_indices,tree_mask,tree_position_ids, orig, hidden_states, token


def reset_tree_mode(
        model,
):
    model.base_model.model.tree_mask = None
    model.base_model.model.tree_mode = None


def reset_past_key_values(passed_key_values: List[torch.Tensor]) -> List[torch.Tensor]:
    """
    Resets the current lengths in the passed key-values to zero.

    This function is designed to be used during the evaluation of a baseline model.
    It iterates through each layer's key-values and sets their current lengths to zero,
    effectively resetting their state.

    Args:
    - passed_key_values (list of torch.Tensor): Contains past hidden states and past attention values for each layer.

    Returns:
    - passed_key_values (list of torch.Tensor): Updated past hidden states and past attention values with reset lengths.
    """
    for i in range(len(passed_key_values)):
        for j in range(2):
            passed_key_values[i][j].current_length.fill_(0)
    return passed_key_values


def generate_candidates(tree_logits, tree_indices, retrieve_indices, sample_token, logits_processor):
    sample_token = sample_token.to(tree_indices.device)

    candidates_logit = sample_token[0]

    candidates_tree_logits = tree_logits

    candidates = torch.cat([candidates_logit, candidates_tree_logits.view(-1)], dim=-1)

    tree_candidates = candidates[tree_indices]

    tree_candidates_ext = torch.cat(
        [tree_candidates, torch.zeros((1), dtype=torch.long, device=tree_candidates.device) - 1], dim=0)

    cart_candidates = tree_candidates_ext[retrieve_indices]


    # Unsqueeze the tree candidates for dimension consistency.
    tree_candidates = tree_candidates.unsqueeze(0)
    return cart_candidates,  tree_candidates


def tree_decoding(
        model,
        tree_candidates,
        past_key_values,
        tree_position_ids,
        input_ids,
        retrieve_indices,
):
    position_ids = tree_position_ids + input_ids.shape[1]

    outputs, tree_logits, hidden_state = model(
        tree_candidates,
        output_orig=True,
        past_key_values=past_key_values,
        position_ids=position_ids,
    )


    logits = tree_logits[0, retrieve_indices]
    return logits, hidden_state, outputs





def evaluate_posterior(
        logits: torch.Tensor,
        candidates: torch.Tensor,
        logits_processor,
):
    """
    Evaluate the posterior probabilities of the candidates based on the provided logits and choose the best candidate.

    Depending on the temperature value, the function either uses greedy decoding or evaluates posterior
    probabilities to select the best candidate.

    Args:
    - logits (torch.Tensor): Predicted logits of shape (batch_size, sequence_length, vocab_size).
    - candidates (torch.Tensor): Candidate token sequences.
    - temperature (float): Softmax temperature for probability scaling. A value of 0 indicates greedy decoding.
    - posterior_threshold (float): Threshold for posterior probability.
    - posterior_alpha (float): Scaling factor for the threshold.

    Returns:
    - best_candidate (torch.Tensor): Index of the chosen best candidate.
    - accept_length (int): Length of the accepted candidate sequence.
    """
    # Greedy decoding based on temperature value
    if logits_processor is None:
        # Find the tokens that match the maximum logits for each position in the sequence
        posterior_mask = (
                candidates[:, 1:].to(logits.device) == torch.argmax(logits[:, :-1], dim=-1)
        ).int()
        candidates_accept_length = (torch.cumprod(posterior_mask, dim=1)).sum(dim=1)
        accept_length = candidates_accept_length.max()
        # Choose the best candidate
        if accept_length == 0:
            # Default to the first candidate if none are accepted
            best_candidate = torch.tensor(0, dtype=torch.long, device=candidates.device)
        else:
            best_candidate = torch.argmax(candidates_accept_length).to(torch.long)
        return best_candidate, accept_length, logits[best_candidate, accept_length]

    else:
        accept_length = 1
        accept_cand = candidates[0][:1]
        best_candidate = 0
        for i in range(1, candidates.shape[1]):
            if i != accept_length:
                break
            adjustflag = False
            is_eq = (candidates[:, :accept_length] == accept_cand).all(dim=1)
            fi = torch.nonzero(is_eq, as_tuple=True)[0][0]
            gt_logits = logits[fi, i - 1][None]
            gt_logits = logits_processor(None, gt_logits)[0]
            gtp = torch.softmax(gt_logits, dim=0)
            candidates_set = []
            for j in range(candidates.shape[0]):
                if is_eq[j]:
                    x = candidates[j, i]
                    xi = x.item()
                    if xi in candidates_set or xi == -1:
                        continue
                    candidates_set.append(xi)
                    r = random.random()
                    px = gtp[xi]
                    qx = 1.0
                    acp = px / qx
                    if r <= acp:
                        accept_cand = torch.cat((accept_cand, x[None]), dim=0)
                        accept_length += 1
                        best_candidate = j
                        break
                    else:
                        gtp[xi] = 0
                        gtp = gtp / gtp.sum()
                        adjustflag = True
        if adjustflag and accept_length != candidates.shape[1]:
            sample_p = gtp
        else:
            gt_logits = logits[best_candidate, accept_length - 1]
            sample_p = torch.softmax(gt_logits, dim=0)
        return torch.tensor(best_candidate), accept_length - 1, sample_p


@torch.no_grad()
def update_inference_inputs(
        input_ids,
        candidates,
        best_candidate,
        accept_length,
        retrieve_indices,
        logits_processor,
        new_token,
        past_key_values_data_list,
        current_length_data,
        model,
        hidden_state_new,
        sample_p
):
    prev_input_len = input_ids.shape[1]
    # Map the best candidate indices to the original indices in the sequence
    select_indices = (
            retrieve_indices[best_candidate, : accept_length + 1] + prev_input_len
    )
    # Append the tokens from the best candidate to the input sequence
    input_ids = torch.cat(
        [input_ids, candidates[None, best_candidate, : accept_length + 1].to(input_ids.device)], dim=-1
    )
    # Update the past key values based on the selected tokens
    # Source tensor that contains relevant past information based on the selected candidate
    for past_key_values_data in past_key_values_data_list:
        tgt = past_key_values_data[..., select_indices.to(past_key_values_data.device), :]
        # Destination tensor where the relevant past information will be stored
        dst = past_key_values_data[..., prev_input_len: prev_input_len + tgt.shape[-2], :]
        # Copy relevant past information from the source to the destination
        dst.copy_(tgt, non_blocking=True)

    # Update the current length tensor (currently only support batch size is 1)
    current_length_data.fill_(prev_input_len + tgt.shape[-2])

    retrieve_hidden_state_new = hidden_state_new[:, retrieve_indices]
    accept_hidden_state_new = retrieve_hidden_state_new[:, best_candidate, : accept_length + 1]
    # token=model.base_model.lm_head(accept_hidden_state_new[:,-1]).argmax()
    # token=token[None,None]
    prob = sample_p
    if logits_processor is not None:
        token = torch.multinomial(prob, 1)
        token = token[None]
    else:
        token = torch.argmax(prob)
        token = token[None, None]
    # hidden_state = torch.cat((hidden_state, accept_hidden_state_new), dim=1)
    draft_tokens, retrieve_indices,tree_mask,tree_position_ids = model.ea_layer.topK_genrate(accept_hidden_state_new,
                                              input_ids=torch.cat((input_ids, token.to(input_ids.device)), dim=1),
                                              head=model.base_model.lm_head,logits_processor=logits_processor)


    new_token += accept_length + 1

    return input_ids, draft_tokens, retrieve_indices,tree_mask,tree_position_ids, new_token, None, token


if __name__ == "__main__":
    logits = torch.randn(1, 5)
    tp = prepare_logits_processor(0.9, 0, 0.9, 0)
    l = tp(None, logits)
    if tp is None:
        print(tp)