File size: 39,559 Bytes
8362bbb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bffaf15
8362bbb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
# coding=utf-8
# Copyright 2022 EleutherAI and the HuggingFace Inc. team. All rights reserved.
#
# This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
# and OPT implementations in this library. It has been modified from its
# original forms to accommodate minor architectural differences compared
# to GPT-NeoX and OPT used by the Meta AI team that trained the model.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" PyTorch LLaMA model."""
import copy
import os
# os.environ["CUDA_VISIBLE_DEVICES"] = "5"
import math
from typing import List, Optional, Tuple, Union

import torch
import torch.nn.functional as F
import torch.utils.checkpoint
from torch import nn
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss

from transformers.activations import ACT2FN
from transformers.modeling_outputs import BaseModelOutputWithPast, CausalLMOutputWithPast, \
    SequenceClassifierOutputWithPast
from transformers.modeling_utils import PreTrainedModel
from transformers.pytorch_utils import ALL_LAYERNORM_LAYERS
from transformers.utils import (
    add_start_docstrings,
    add_start_docstrings_to_model_forward,
    logging,
    replace_return_docstrings,
)

try:
    from .configs import EConfig
except:
    from configs import EConfig


import time


class Timer:
    def __init__(self, name):
        self.name = name

    def __enter__(self):
        torch.cuda.synchronize()
        self.start = time.perf_counter()

    def __exit__(self, exc_type, exc_value, traceback):
        torch.cuda.synchronize()
        elapsed = time.perf_counter() - self.start
        print(f'{self.name} took {elapsed} seconds')


# Copied from transformers.models.bart.modeling_bart._make_causal_mask
def _make_causal_mask(
        input_ids_shape: torch.Size, dtype: torch.dtype, device: torch.device, past_key_values_length: int = 0
):
    """
    Make causal mask used for bi-directional self-attention.
    """
    bsz, tgt_len = input_ids_shape
    mask = torch.full((tgt_len, tgt_len), torch.finfo(dtype).min, device=device)
    mask_cond = torch.arange(mask.size(-1), device=device)
    mask.masked_fill_(mask_cond < (mask_cond + 1).view(mask.size(-1), 1), 0)
    mask = mask.to(dtype)

    if past_key_values_length > 0:
        mask = torch.cat([torch.zeros(tgt_len, past_key_values_length, dtype=dtype, device=device), mask], dim=-1)
    return mask[None, None, :, :].expand(bsz, 1, tgt_len, tgt_len + past_key_values_length)


# Copied from transformers.models.bart.modeling_bart._expand_mask
def _expand_mask(mask: torch.Tensor, dtype: torch.dtype, tgt_len: Optional[int] = None):
    """
    Expands attention_mask from `[bsz, seq_len]` to `[bsz, 1, tgt_seq_len, src_seq_len]`.
    """
    bsz, src_len = mask.size()
    tgt_len = tgt_len if tgt_len is not None else src_len

    expanded_mask = mask[:, None, None, :].expand(bsz, 1, tgt_len, src_len).to(dtype)

    inverted_mask = 1.0 - expanded_mask

    return inverted_mask.masked_fill(inverted_mask.to(torch.bool), torch.finfo(dtype).min)


def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
    """
    This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch,
    num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim)
    """
    batch, num_key_value_heads, slen, head_dim = hidden_states.shape
    if n_rep == 1:
        return hidden_states
    hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim)
    return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim)


def rotate_half(x):
    """Rotates half the hidden dims of the input."""
    x1 = x[..., : x.shape[-1] // 2]
    x2 = x[..., x.shape[-1] // 2:]
    return torch.cat((-x2, x1), dim=-1)


def apply_rotary_pos_emb(q, k, cos, sin, position_ids):
    # The first two dimensions of cos and sin are always 1, so we can `squeeze` them.
    cos = cos.squeeze(1).squeeze(0)  # [seq_len, dim]
    sin = sin.squeeze(1).squeeze(0)  # [seq_len, dim]
    cos = cos[position_ids].unsqueeze(1)  # [bs, 1, seq_len, dim]
    sin = sin[position_ids].unsqueeze(1)  # [bs, 1, seq_len, dim]
    q_embed = (q * cos) + (rotate_half(q) * sin)
    k_embed = (k * cos) + (rotate_half(k) * sin)
    return q_embed, k_embed


class LlamaRotaryEmbedding(torch.nn.Module):
    def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None):
        super().__init__()

        self.dim = dim
        self.max_position_embeddings = max_position_embeddings
        self.base = base
        inv_freq = 1.0 / (self.base ** (torch.arange(0, self.dim, 2).float().to(device) / self.dim))
        self.register_buffer("inv_freq", inv_freq, persistent=False)

        # Build here to make `torch.jit.trace` work.
        self._set_cos_sin_cache(
            seq_len=max_position_embeddings, device=self.inv_freq.device, dtype=torch.get_default_dtype()
        )

    def _set_cos_sin_cache(self, seq_len, device, dtype):
        self.max_seq_len_cached = seq_len
        t = torch.arange(self.max_seq_len_cached, device=device, dtype=self.inv_freq.dtype)

        freqs = torch.einsum("i,j->ij", t, self.inv_freq)
        # Different from paper, but it uses a different permutation in order to obtain the same calculation
        emb = torch.cat((freqs, freqs), dim=-1)
        self.register_buffer("cos_cached", emb.cos()[None, None, :, :].to(dtype), persistent=False)
        self.register_buffer("sin_cached", emb.sin()[None, None, :, :].to(dtype), persistent=False)

    def forward(self, x, seq_len=None):
        # x: [bs, num_attention_heads, seq_len, head_size]
        if seq_len > self.max_seq_len_cached:
            self._set_cos_sin_cache(seq_len=seq_len, device=x.device, dtype=x.dtype)

        return (
            self.cos_cached[:, :, :seq_len, ...].to(dtype=x.dtype),
            self.sin_cached[:, :, :seq_len, ...].to(dtype=x.dtype),
        )


class LlamaLinearScalingRotaryEmbedding(LlamaRotaryEmbedding):
    """LlamaRotaryEmbedding extended with linear scaling. Credits to the Reddit user /u/kaiokendev"""

    def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None, scaling_factor=1.0):
        self.scaling_factor = scaling_factor
        super().__init__(dim, max_position_embeddings, base, device)

    def _set_cos_sin_cache(self, seq_len, device, dtype):
        self.max_seq_len_cached = seq_len
        t = torch.arange(self.max_seq_len_cached, device=device, dtype=self.inv_freq.dtype)
        t = t / self.scaling_factor

        freqs = torch.einsum("i,j->ij", t, self.inv_freq)
        # Different from paper, but it uses a different permutation in order to obtain the same calculation
        emb = torch.cat((freqs, freqs), dim=-1)
        self.register_buffer("cos_cached", emb.cos()[None, None, :, :].to(dtype), persistent=False)
        self.register_buffer("sin_cached", emb.sin()[None, None, :, :].to(dtype), persistent=False)


class LlamaDynamicNTKScalingRotaryEmbedding(LlamaRotaryEmbedding):
    """LlamaRotaryEmbedding extended with Dynamic NTK scaling. Credits to the Reddit users /u/bloc97 and /u/emozilla"""

    def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None, scaling_factor=1.0):
        self.scaling_factor = scaling_factor
        super().__init__(dim, max_position_embeddings, base, device)

    def _set_cos_sin_cache(self, seq_len, device, dtype):
        self.max_seq_len_cached = seq_len

        if seq_len > self.max_position_embeddings:
            base = self.base * (
                    (self.scaling_factor * seq_len / self.max_position_embeddings) - (self.scaling_factor - 1)
            ) ** (self.dim / (self.dim - 2))
            inv_freq = 1.0 / (base ** (torch.arange(0, self.dim, 2).float().to(device) / self.dim))
            self.register_buffer("inv_freq", inv_freq, persistent=False)

        t = torch.arange(self.max_seq_len_cached, device=device, dtype=self.inv_freq.dtype)

        freqs = torch.einsum("i,j->ij", t, self.inv_freq)
        # Different from paper, but it uses a different permutation in order to obtain the same calculation
        emb = torch.cat((freqs, freqs), dim=-1)
        self.register_buffer("cos_cached", emb.cos()[None, None, :, :].to(dtype), persistent=False)
        self.register_buffer("sin_cached", emb.sin()[None, None, :, :].to(dtype), persistent=False)


class LlamaAttention(nn.Module):
    """Multi-headed attention from 'Attention Is All You Need' paper"""

    def __init__(self, config):
        super().__init__()
        self.config = config
        self.hidden_size = config.hidden_size
        self.num_heads = config.num_attention_heads
        self.head_dim = self.hidden_size // self.num_heads
        self.num_key_value_heads = config.num_key_value_heads
        self.num_key_value_groups = self.num_heads // self.num_key_value_heads
        self.max_position_embeddings = config.max_position_embeddings

        if (self.head_dim * self.num_heads) != self.hidden_size:
            raise ValueError(
                f"hidden_size must be divisible by num_heads (got `hidden_size`: {self.hidden_size}"
                f" and `num_heads`: {self.num_heads})."
            )
        self.q_proj = nn.Linear(self.hidden_size, self.num_heads * self.head_dim, bias=False)
        self.k_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=False)
        self.v_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=False)
        self.o_proj = nn.Linear(self.num_heads * self.head_dim, self.hidden_size, bias=False)
        self._init_rope()

    def _init_rope(self):
        if self.config.rope_scaling is None:
            if hasattr(self.config, "rope_theta"):
                self.rotary_emb = LlamaRotaryEmbedding(self.head_dim,
                                                       max_position_embeddings=self.max_position_embeddings,
                                                       base=self.config.rope_theta)
            else:
                self.rotary_emb = LlamaRotaryEmbedding(self.head_dim,
                                                       max_position_embeddings=self.max_position_embeddings)
        else:
            scaling_type = self.config.rope_scaling["type"]
            scaling_factor = self.config.rope_scaling["factor"]
            if scaling_type == "linear":
                self.rotary_emb = LlamaLinearScalingRotaryEmbedding(
                    self.head_dim, max_position_embeddings=self.max_position_embeddings, scaling_factor=scaling_factor
                )
            elif scaling_type == "dynamic":
                self.rotary_emb = LlamaDynamicNTKScalingRotaryEmbedding(
                    self.head_dim, max_position_embeddings=self.max_position_embeddings, scaling_factor=scaling_factor
                )
            else:
                raise ValueError(f"Unknown RoPE scaling type {scaling_type}")

    def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int):
        return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous()

    def forward(
            self,
            hidden_states: torch.Tensor,
            attention_mask: Optional[torch.Tensor] = None,
            position_ids: Optional[torch.LongTensor] = None,
            past_key_value: Optional[Tuple[torch.Tensor]] = None,
            output_attentions: bool = False,
            use_cache: bool = False,
    ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
        bsz, q_len, _ = hidden_states.size()

        if self.config.pretraining_tp > 1:
            key_value_slicing = (self.num_key_value_heads * self.head_dim) // self.config.pretraining_tp
            query_slices = self.q_proj.weight.split(
                (self.num_heads * self.head_dim) // self.config.pretraining_tp, dim=0
            )
            key_slices = self.k_proj.weight.split(key_value_slicing, dim=0)
            value_slices = self.v_proj.weight.split(key_value_slicing, dim=0)

            query_states = [F.linear(hidden_states, query_slices[i]) for i in range(self.config.pretraining_tp)]
            query_states = torch.cat(query_states, dim=-1)

            key_states = [F.linear(hidden_states, key_slices[i]) for i in range(self.config.pretraining_tp)]
            key_states = torch.cat(key_states, dim=-1)

            value_states = [F.linear(hidden_states, value_slices[i]) for i in range(self.config.pretraining_tp)]
            value_states = torch.cat(value_states, dim=-1)

        else:
            query_states = self.q_proj(hidden_states)
            key_states = self.k_proj(hidden_states)
            value_states = self.v_proj(hidden_states)

        query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
        key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
        value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)

        kv_seq_len = key_states.shape[-2]
        if past_key_value is not None:
            kv_seq_len += past_key_value[0].shape[-2]
        cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
        query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids)

        if past_key_value is not None:
            # reuse k, v, self_attention
            key_states = torch.cat([past_key_value[0], key_states], dim=2)
            value_states = torch.cat([past_key_value[1], value_states], dim=2)

        past_key_value = (key_states, value_states) if use_cache else None

        # repeat k/v heads if n_kv_heads < n_heads
        key_states = repeat_kv(key_states, self.num_key_value_groups)
        value_states = repeat_kv(value_states, self.num_key_value_groups)

        attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) / math.sqrt(self.head_dim)

        if attn_weights.size() != (bsz, self.num_heads, q_len, kv_seq_len):
            raise ValueError(
                f"Attention weights should be of size {(bsz, self.num_heads, q_len, kv_seq_len)}, but is"
                f" {attn_weights.size()}"
            )

        if attention_mask is not None:
            if attention_mask.size() != (bsz, 1, q_len, kv_seq_len):
                raise ValueError(
                    f"Attention mask should be of size {(bsz, 1, q_len, kv_seq_len)}, but is {attention_mask.size()}"
                )
            attn_weights = attn_weights + attention_mask

        # upcast attention to fp32
        attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query_states.dtype)
        attn_output = torch.matmul(attn_weights, value_states)

        if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim):
            raise ValueError(
                f"`attn_output` should be of size {(bsz, self.num_heads, q_len, self.head_dim)}, but is"
                f" {attn_output.size()}"
            )

        attn_output = attn_output.transpose(1, 2).contiguous()
        attn_output = attn_output.reshape(bsz, q_len, self.hidden_size)

        if self.config.pretraining_tp > 1:
            attn_output = attn_output.split(self.hidden_size // self.config.pretraining_tp, dim=2)
            o_proj_slices = self.o_proj.weight.split(self.hidden_size // self.config.pretraining_tp, dim=1)
            attn_output = sum([F.linear(attn_output[i], o_proj_slices[i]) for i in range(self.config.pretraining_tp)])
        else:
            attn_output = self.o_proj(attn_output)

        if not output_attentions:
            attn_weights = None

        return attn_output, attn_weights, past_key_value


class LlamaMLP(nn.Module):
    def __init__(self, config):
        super().__init__()
        self.config = config
        self.hidden_size = config.hidden_size
        self.intermediate_size = config.intermediate_size
        self.gate_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
        self.up_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
        self.down_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=False)
        self.act_fn = ACT2FN[config.hidden_act]

    def forward(self, x):
        if self.config.pretraining_tp > 1:
            slice = self.intermediate_size // self.config.pretraining_tp
            gate_proj_slices = self.gate_proj.weight.split(slice, dim=0)
            up_proj_slices = self.up_proj.weight.split(slice, dim=0)
            down_proj_slices = self.down_proj.weight.split(slice, dim=1)

            gate_proj = torch.cat(
                [F.linear(x, gate_proj_slices[i]) for i in range(self.config.pretraining_tp)], dim=-1
            )
            up_proj = torch.cat([F.linear(x, up_proj_slices[i]) for i in range(self.config.pretraining_tp)], dim=-1)

            intermediate_states = (self.act_fn(gate_proj) * up_proj).split(slice, dim=2)
            down_proj = [
                F.linear(intermediate_states[i], down_proj_slices[i]) for i in range(self.config.pretraining_tp)
            ]
            down_proj = sum(down_proj)
        else:
            down_proj = self.down_proj(self.act_fn(self.gate_proj(x)) * self.up_proj(x))

        return down_proj


class LlamaRMSNorm(nn.Module):
    def __init__(self, hidden_size, eps=1e-6):
        """
        LlamaRMSNorm is equivalent to T5LayerNorm
        """
        super().__init__()
        self.weight = nn.Parameter(torch.ones(hidden_size))
        self.variance_epsilon = eps

    def forward(self, hidden_states):
        input_dtype = hidden_states.dtype
        hidden_states = hidden_states.to(torch.float32)
        variance = hidden_states.pow(2).mean(-1, keepdim=True)
        hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
        return self.weight * hidden_states.to(input_dtype)


class LlamaDecoderLayer(nn.Module):
    def __init__(self, config, index):
        super().__init__()
        self.hidden_size = config.hidden_size
        self.self_attn = LlamaAttention(config=config)
        self.mlp = LlamaMLP(config)
        self.index = index
        if self.index != 0:
            self.input_layernorm = LlamaRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
        self.post_attention_layernorm = LlamaRMSNorm(config.hidden_size, eps=config.rms_norm_eps)

    def forward(
            self,
            hidden_states: torch.Tensor,
            attention_mask: Optional[torch.Tensor] = None,
            position_ids: Optional[torch.LongTensor] = None,
            past_key_value: Optional[Tuple[torch.Tensor]] = None,
            output_attentions: Optional[bool] = False,
            use_cache: Optional[bool] = False,
    ) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
        """
        Args:
            hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
            attention_mask (`torch.FloatTensor`, *optional*): attention mask of size
                `(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values.
            output_attentions (`bool`, *optional*):
                Whether or not to return the attentions tensors of all attention layers. See `attentions` under
                returned tensors for more detail.
            use_cache (`bool`, *optional*):
                If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding
                (see `past_key_values`).
            past_key_value (`Tuple(torch.FloatTensor)`, *optional*): cached past key and value projection states
        """

        residual = hidden_states

        if self.index != 0:
            hidden_states = self.input_layernorm(hidden_states)

        # Self Attention
        hidden_states, self_attn_weights, present_key_value = self.self_attn(
            hidden_states=hidden_states,
            attention_mask=attention_mask,
            position_ids=position_ids,
            past_key_value=past_key_value,
            output_attentions=output_attentions,
            use_cache=use_cache,
        )
        hidden_states = residual + hidden_states

        # Fully Connected
        residual = hidden_states
        hidden_states = self.post_attention_layernorm(hidden_states)
        hidden_states = self.mlp(hidden_states)
        hidden_states = residual + hidden_states

        outputs = (hidden_states,)

        if output_attentions:
            outputs += (self_attn_weights,)

        if use_cache:
            outputs += (present_key_value,)

        return outputs


class I(nn.Module):
    def __init__(self):
        super().__init__()
        self.dummy = nn.Parameter(torch.ones(1, dtype=torch.float32))

    def forward(self, x):
        return x + self.dummy - self.dummy  # (also tried x+self.dummy)


def len_list(x, n):
    return [i for i in x if len(i) <= n]


class Model(nn.Module):
    def __init__(self, config, load_emb=False, path=None, bias=True, total_tokens=63, depth=5, top_k=8, threshold=1.0):
        super().__init__()

        self.gradient_checkpointing = True
        self.padding_idx = config.pad_token_id
        self.vocab_size = config.vocab_size

        self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx)
        if load_emb:
            from safetensors import safe_open
            import json
            try:
                with open(os.path.join(path, "model.safetensors.index.json"), "r") as f:
                    index_json = json.loads(f.read())
                    emb_path = index_json["weight_map"]["model.embed_tokens.weight"]
                with safe_open(os.path.join(path, emb_path),
                               framework="pt",
                               device="cpu") as f:
                    tensor_slice = f.get_slice("model.embed_tokens.weight")
                    vocab_size, hidden_dim = tensor_slice.get_shape()
                    tensor = tensor_slice[:, :hidden_dim].float()
            except:
                with open(os.path.join(path, "pytorch_model.bin.index.json"), "r") as f:
                    index_json = json.loads(f.read())
                    emb_path = index_json["weight_map"]["model.embed_tokens.weight"]
                weights = torch.load(os.path.join(path, emb_path))
                tensor = weights["model.embed_tokens.weight"].float()
            self.embed_tokens.weight.data = tensor

        self.top_k = top_k
        self.total_tokens = total_tokens - 1
        self.depth = depth
        self.threshold = math.log(threshold)
        # print("total_tokens",total_tokens)
        # print("depth",depth)
        # print("top_k",top_k)
        # print("threshold",threshold)

        self.layers = nn.ModuleList([LlamaDecoderLayer(config, index) for index in range(config.num_hidden_layers)])
        self.fc = nn.Linear(2 * config.hidden_size, config.hidden_size, bias=bias)
        self.act = ACT2FN[config.hidden_act]
        self.logsoftmax = nn.LogSoftmax(dim=-1)
        for param in self.embed_tokens.parameters():
            param.requires_grad = False

    def init_tree(self):
        self.tree_mask_init = torch.eye(self.top_k, device=self.embed_tokens.weight.device)[None, None]
        self.position_ids = torch.zeros(self.top_k, device=self.embed_tokens.weight.device, dtype=torch.long)
        self.tree_mask_init = self.tree_mask_init.to(self.embed_tokens.weight.device)

    def reset(self):
        self.tree_mask = None

    def _prepare_decoder_attention_mask(self, attention_mask, input_shape, inputs_embeds, past_key_values_length):
        # create causal mask
        # [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
        combined_attention_mask = None
        if input_shape[-1] > 1:
            combined_attention_mask = _make_causal_mask(
                input_shape,
                # inputs_embeds.dtype,
                torch.float32,  # [MODIFIED] force to cast to float32
                device=inputs_embeds.device,
                past_key_values_length=past_key_values_length,
            )

        if attention_mask is not None:
            # [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
            expanded_attn_mask = _expand_mask(attention_mask, torch.float32, tgt_len=input_shape[-1]).to(
                inputs_embeds.device
            )
            combined_attention_mask = (
                expanded_attn_mask if combined_attention_mask is None else expanded_attn_mask + combined_attention_mask
            )

        # [MODIFIED] add tree mask
        if hasattr(self, "tree_mask") and self.tree_mask is not None:
            tree_mask = self.tree_mask
            _, _, tree_shape0, tree_shape1 = tree_mask.shape
            combined_attention_mask[:, :, -tree_shape0:, -tree_shape1:][
                tree_mask == 0
                ] = torch.finfo(torch.float32).min

        return combined_attention_mask

    def forward(
            self,
            hidden_states,
            input_ids,
            attention_mask: Optional[torch.Tensor] = None,
            position_ids: Optional[torch.LongTensor] = None,
            past_key_values: Optional[List[torch.FloatTensor]] = None,
            inputs_embeds: Optional[torch.FloatTensor] = None,
            use_cache: Optional[bool] = None,
            output_attentions: Optional[bool] = None,
            output_hidden_states: Optional[bool] = None,
            return_dict: Optional[bool] = None,
            std=None
    ):
        batch_size, seq_length, _ = hidden_states.shape
        seq_length_with_past = seq_length
        past_key_values_length = 0

        with torch.no_grad():
            inputs_embeds = self.embed_tokens(input_ids)
            # inputs_embeds = inputs_embeds.detach()

        # if std is not None:
        #     noise = torch.randn(inputs_embeds.size(),device=inputs_embeds.device) * std
        #     inputs_embeds=inputs_embeds+noise

        if past_key_values is not None:
            past_key_values_length = past_key_values[0][0].shape[2]
            seq_length_with_past = seq_length_with_past + past_key_values_length
        if position_ids is None:
            device = hidden_states.device if hidden_states is not None else inputs_embeds.device
            position_ids = torch.arange(
                past_key_values_length, seq_length + past_key_values_length, dtype=torch.long, device=device
            )
            position_ids = position_ids.unsqueeze(0).view(-1, seq_length)
        else:
            position_ids = position_ids.view(-1, seq_length).long()

        if attention_mask is None:
            attention_mask = torch.ones(
                (batch_size, seq_length_with_past), dtype=torch.bool, device=hidden_states.device
            )
        attention_mask = self._prepare_decoder_attention_mask(
            attention_mask, (batch_size, seq_length), hidden_states, past_key_values_length
        )

        # if self.gradient_checkpointing and self.training:
        #    if use_cache:
        #        use_cache = False

        # hidden_states=self.act(self.fc(torch.cat((inputs_embeds,hidden_states),dim=-1)))
        inputs_embeds = inputs_embeds.to(hidden_states.dtype)
        hidden_states = self.fc(torch.cat((inputs_embeds, hidden_states), dim=-1))

        all_hidden_states = () if output_hidden_states else None
        next_decoder_cache = () if use_cache else None

        for idx, decoder_layer in enumerate(self.layers):
            if output_hidden_states:
                all_hidden_states += (hidden_states,)

            past_key_value = past_key_values[idx] if past_key_values is not None else None

            if self.gradient_checkpointing and self.training:

                def create_custom_forward(module):
                    def custom_forward(*inputs):
                        # None for past_key_value
                        return module(*inputs, past_key_value, output_attentions)

                    return custom_forward

                layer_outputs = torch.utils.checkpoint.checkpoint(
                    create_custom_forward(decoder_layer),
                    hidden_states,
                    attention_mask,
                    position_ids,
                )
            else:
                layer_outputs = decoder_layer(
                    hidden_states,
                    attention_mask=attention_mask,
                    position_ids=position_ids,
                    past_key_value=past_key_value,
                    output_attentions=output_attentions,
                    use_cache=use_cache,
                )

            hidden_states = layer_outputs[0]

            if use_cache:
                next_decoder_cache += (layer_outputs[2 if output_attentions else 1],)

        if use_cache:
            return hidden_states, next_decoder_cache

        return hidden_states

    def reset_kv(self):
        self.stable_kv = None

    @torch.no_grad()
    def topK_genrate(self, hidden_states, input_ids, head, logits_processor):

        input_ids = input_ids.to(hidden_states.device)
        total_tokens = self.total_tokens
        depth = self.depth
        top_k = self.top_k

        sample_token = input_ids[:, -1]

        scores_list = []
        parents_list = []
        ss_token = []

        input_ids = input_ids[:, 1:]
        input_ids = input_ids.to(hidden_states.device)

        len_posi = input_ids.shape[1]
        self.reset()

        # with Timer("draft many"):
        if hasattr(self, "stable_kv") and self.stable_kv is not None:
            kv_len = self.stable_kv[0][0].shape[2]
            out_hidden, past_key_values = self(hidden_states, input_ids=input_ids[:, kv_len:],
                                               past_key_values=self.stable_kv, use_cache=True)
        else:
            out_hidden, past_key_values = self(hidden_states, input_ids=input_ids, use_cache=True)
        self.stable_kv = past_key_values
        last_hidden = out_hidden[:, -1]

        last_headout = head(last_hidden)

        last_p = self.logsoftmax(last_headout)
        top = torch.topk(last_p, top_k, dim=-1)
        topk_index, topk_p = top.indices, top.values
        scores = topk_p[0]
        scores_list.append(scores[None])
        parents_list.append(torch.zeros(1, dtype=torch.long, device=scores.device))
        ss_token.append(topk_index)
        input_ids = topk_index
        input_hidden = last_hidden[None].repeat(1, top_k, 1)
        tree_mask = self.tree_mask_init
        topk_cs_index = torch.arange(top_k, device=self.embed_tokens.weight.device)

        # 4
        for i in range(depth):
            self.tree_mask = tree_mask
            position_ids = len_posi + self.position_ids
            # with Timer("draft one"):
            out_hidden, past_key_values = self(input_hidden, input_ids=input_ids, past_key_values=past_key_values,
                                               position_ids=position_ids, use_cache=True)
            len_posi += 1

            # with Timer("sort1"):
            bias1 = top_k if i > 0 else 0
            bias2 = max(0, i - 1)
            bias = 1 + top_k ** 2 * bias2 + bias1
            parents = (topk_cs_index + bias)
            parents_list.append(parents)

            last_headout = head(out_hidden[0])
            last_p = self.logsoftmax(last_headout)

            top = torch.topk(last_p, top_k, dim=-1)
            topk_index, topk_p = top.indices, top.values

            cu_scores = topk_p + scores[:, None]

            topk_cs = torch.topk(cu_scores.view(-1), top_k, dim=-1)
            topk_cs_index, topk_cs_p = topk_cs.indices, topk_cs.values
            scores = topk_cs_p

            out_ids = topk_cs_index // top_k
            input_hidden = out_hidden[:, out_ids]
            # with Timer("2index"):
            #     in_ids = topk_cs_index % top_k
            #     input_ids = topk_index[out_ids, in_ids][None]
            # with Timer("1index"):
            input_ids = topk_index.view(-1)[topk_cs_index][None]
            # print(input_ids.equal(input_ids0))

            ss_token.append(topk_index)
            scores_list.append(cu_scores)
            tree_mask = torch.cat((tree_mask[:, :, out_ids], self.tree_mask_init), dim=3)

            # if self.threshold < 0 and cu_scores.max() < self.threshold:
            #     break

        # del parents_list,scores_list,ss_token
        # return draft_tokens, mask_index,tree_mask,tree_position_ids

        # with Timer("post"):

        scores_list = torch.cat(scores_list, dim=0).view(-1)
        ss_token_list = torch.cat(ss_token, dim=0).view(-1)
        top_scores = torch.topk(scores_list, total_tokens, dim=-1)
        top_scores_index = top_scores.indices
        top_scores_index = torch.sort(top_scores_index).values

        draft_tokens = ss_token_list[top_scores_index]
        draft_tokens = torch.cat((sample_token, draft_tokens), dim=0)

        draft_parents = torch.cat(parents_list, dim=0)[top_scores_index // top_k].long()
        mask_index = torch.searchsorted(top_scores_index, draft_parents - 1, right=False)
        # mask_index[(top_scores_index[mask_index]!=draft_parents - 1)]=-1
        mask_index[draft_parents == 0] = -1
        mask_index = mask_index + 1
        mask_index_list = mask_index.tolist()
        # with Timer("mask"):
        tree_mask = torch.eye(total_tokens + 1).bool()
        tree_mask[:, 0] = True
        for i in range(total_tokens):
            tree_mask[i + 1].add_(tree_mask[mask_index_list[i]])

        # with Timer("mask1"):
        #     tree_mask0 = [[False for _ in range(total_tokens + 1)] for _ in range(total_tokens + 1)]
        #     tree_mask0[0][0] = True
        #     for i in range(total_tokens):
        #         #tree_mask0[i + 1][0]=True
        #         tree_mask0[i + 1][i + 1] = True
        #         p=mask_index_list[i]
        #         tree_mask0[i + 1][p] = True
        #         while p:
        #             p=mask_index_list[p-1]
        #             tree_mask0[i + 1][p] = True
        #     tree_mask0 = torch.tensor(tree_mask0, dtype=torch.bool)
        #
        # print(tree_mask0.equal(tree_mask))
        tree_position_ids = torch.sum(tree_mask, dim=1) - 1

        tree_mask = tree_mask.float()[None, None]
        draft_tokens = draft_tokens[None]

        del parents_list, scores_list, ss_token, ss_token_list, draft_parents

        # with Timer("retrieve"):

        max_depth = torch.max(tree_position_ids) + 1
        noleaf_index = torch.unique(mask_index).tolist()
        noleaf_num = len(noleaf_index) - 1
        leaf_num = total_tokens - noleaf_num

        retrieve_indices = torch.zeros(leaf_num, max_depth.item(), dtype=torch.long) - 1
        retrieve_indices = retrieve_indices.tolist()

        rid = 0
        position_ids_list = tree_position_ids.tolist()

        for i in range(total_tokens + 1):
            if i not in noleaf_index:
                cid = i
                depth = position_ids_list[i]
                for j in reversed(range(depth + 1)):
                    retrieve_indices[rid][j] = cid
                    cid = mask_index_list[cid - 1]
                rid += 1

        if logits_processor is not None:
            maxitem = total_tokens + 5

            def custom_sort(lst):
                # sort_keys=[len(list)]
                sort_keys = []
                for i in range(len(lst)):
                    sort_keys.append(lst[i] if lst[i] >= 0 else maxitem)
                return sort_keys

            retrieve_indices = sorted(retrieve_indices, key=custom_sort)

        retrieve_indices = torch.tensor(retrieve_indices, dtype=torch.long)
        del mask_index, mask_index_list, noleaf_index, noleaf_num, leaf_num, max_depth, rid
        tree_position_ids = tree_position_ids.to(hidden_states.device)

        return draft_tokens, retrieve_indices, tree_mask, tree_position_ids

    @torch.no_grad()
    def acc(self, data, head, max_length=5):
        hidden_states = data["hidden_states"]
        input_ids = data["input_ids"]
        # attention_mask=data["attention_mask"]
        loss_mask = data["loss_mask"]
        sample_mask = data["sample_mask"]
        target = data["target"]
        total = [0 for _ in range(max_length)]
        correct = [0 for _ in range(max_length)]
        bs, sl = hidden_states.shape[0], hidden_states.shape[1]
        target_headout = head(target)
        hidden_states_headout = head(hidden_states)

        for i in range(bs):
            for j in range(sl):
                if loss_mask[i, j] == 0:
                    continue
                single_hidden_states = hidden_states[i, :j]
                single_input_ids = input_ids[i, :j]

                single_hidden_states = single_hidden_states[None, :, :]
                single_input_ids = single_input_ids[None, :]
                for k in range(max_length):
                    tmp_in_target_headout = hidden_states_headout[i, single_hidden_states.shape[1] - 1]
                    tmp_out_target_headout = target_headout[i, single_hidden_states.shape[1] - 1]
                    target_in_token = torch.argmax(tmp_in_target_headout)
                    target_out_token = torch.argmax(tmp_out_target_headout)
                    tmp_token = input_ids[i, single_hidden_states.shape[1] - 1]
                    tmp_sample_mask = sample_mask[i, single_hidden_states.shape[1] - 1]
                    if not (target_in_token == tmp_token):
                        break
                    out_hidden = self(single_hidden_states, input_ids=single_input_ids)
                    last_hidden = out_hidden[:, -1]
                    last_headout = head(last_hidden)
                    token = torch.argmax(last_headout)
                    total[k] += 1
                    if token == target_out_token:
                        correct[k] += 1
                    else:
                        for kk in range(k, max_length):
                            total[kk] += 1
                        break

                    single_hidden_states = torch.cat((single_hidden_states, out_hidden[:, -1:]), dim=1)
                    single_input_ids = torch.cat(
                        (single_input_ids, torch.tensor([[token]]).to(single_input_ids.device)), dim=1)

        acc = [correct[i] / total[i] for i in range(len(correct))]
        return acc


class Vhead(nn.Module):
    def __init__(self, ins=6566, outs=32000):
        super().__init__()
        self.fc = nn.Linear(ins, outs, bias=False)

    def forward(self, x):
        return self.fc(x)


import torch


def count_parameters(model):
    return sum(p.numel() for p in model.parameters())


if __name__ == "__main__":
    config = EConfig.from_pretrained('config.json')
    model = Model(config, load_emb=True, path="/home/lyh/weights/hf/vicuna_v13/7B/")
    print(model)