File size: 6,700 Bytes
4730cdc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
import argparse
import os
import random
import torch
import yaml
from collections import OrderedDict
from os import path as osp

from basicsr.utils import set_random_seed
from basicsr.utils.dist_util import get_dist_info, init_dist, master_only


def ordered_yaml():
    """Support OrderedDict for yaml.

    Returns:
        tuple: yaml Loader and Dumper.
    """
    try:
        from yaml import CDumper as Dumper
        from yaml import CLoader as Loader
    except ImportError:
        from yaml import Dumper, Loader

    _mapping_tag = yaml.resolver.BaseResolver.DEFAULT_MAPPING_TAG

    def dict_representer(dumper, data):
        return dumper.represent_dict(data.items())

    def dict_constructor(loader, node):
        return OrderedDict(loader.construct_pairs(node))

    Dumper.add_representer(OrderedDict, dict_representer)
    Loader.add_constructor(_mapping_tag, dict_constructor)
    return Loader, Dumper


def yaml_load(f):
    """Load yaml file or string.

    Args:
        f (str): File path or a python string.

    Returns:
        dict: Loaded dict.
    """
    if os.path.isfile(f):
        with open(f, 'r') as f:
            return yaml.load(f, Loader=ordered_yaml()[0])
    else:
        return yaml.load(f, Loader=ordered_yaml()[0])


def dict2str(opt, indent_level=1):
    """dict to string for printing options.

    Args:
        opt (dict): Option dict.
        indent_level (int): Indent level. Default: 1.

    Return:
        (str): Option string for printing.
    """
    msg = '\n'
    for k, v in opt.items():
        if isinstance(v, dict):
            msg += ' ' * (indent_level * 2) + k + ':['
            msg += dict2str(v, indent_level + 1)
            msg += ' ' * (indent_level * 2) + ']\n'
        else:
            msg += ' ' * (indent_level * 2) + k + ': ' + str(v) + '\n'
    return msg


def _postprocess_yml_value(value):
    # None
    if value == '~' or value.lower() == 'none':
        return None
    # bool
    if value.lower() == 'true':
        return True
    elif value.lower() == 'false':
        return False
    # !!float number
    if value.startswith('!!float'):
        return float(value.replace('!!float', ''))
    # number
    if value.isdigit():
        return int(value)
    elif value.replace('.', '', 1).isdigit() and value.count('.') < 2:
        return float(value)
    # list
    if value.startswith('['):
        return eval(value)
    # str
    return value


def parse_options(root_path, is_train=True):
    parser = argparse.ArgumentParser()
    parser.add_argument('-opt', type=str, required=True, help='Path to option YAML file.')
    parser.add_argument('--launcher', choices=['none', 'pytorch', 'slurm'], default='none', help='job launcher')
    parser.add_argument('--auto_resume', action='store_true')
    parser.add_argument('--debug', action='store_true')
    parser.add_argument('--local_rank', type=int, default=0)
    parser.add_argument(
        '--force_yml', nargs='+', default=None, help='Force to update yml files. Examples: train:ema_decay=0.999')
    args = parser.parse_args()

    # parse yml to dict
    opt = yaml_load(args.opt)

    # distributed settings
    if args.launcher == 'none':
        opt['dist'] = False
        print('Disable distributed.', flush=True)
    else:
        opt['dist'] = True
        if args.launcher == 'slurm' and 'dist_params' in opt:
            init_dist(args.launcher, **opt['dist_params'])
        else:
            init_dist(args.launcher)
    opt['rank'], opt['world_size'] = get_dist_info()

    # random seed
    seed = opt.get('manual_seed')
    if seed is None:
        seed = random.randint(1, 10000)
        opt['manual_seed'] = seed
    set_random_seed(seed + opt['rank'])

    # force to update yml options
    if args.force_yml is not None:
        for entry in args.force_yml:
            # now do not support creating new keys
            keys, value = entry.split('=')
            keys, value = keys.strip(), value.strip()
            value = _postprocess_yml_value(value)
            eval_str = 'opt'
            for key in keys.split(':'):
                eval_str += f'["{key}"]'
            eval_str += '=value'
            # using exec function
            exec(eval_str)

    opt['auto_resume'] = args.auto_resume
    opt['is_train'] = is_train

    # debug setting
    if args.debug and not opt['name'].startswith('debug'):
        opt['name'] = 'debug_' + opt['name']

    if opt['num_gpu'] == 'auto':
        opt['num_gpu'] = torch.cuda.device_count()

    # datasets
    for phase, dataset in opt['datasets'].items():
        # for multiple datasets, e.g., val_1, val_2; test_1, test_2
        phase = phase.split('_')[0]
        dataset['phase'] = phase
        if 'scale' in opt:
            dataset['scale'] = opt['scale']
        if dataset.get('dataroot_gt') is not None:
            dataset['dataroot_gt'] = osp.expanduser(dataset['dataroot_gt'])
        if dataset.get('dataroot_lq') is not None:
            dataset['dataroot_lq'] = osp.expanduser(dataset['dataroot_lq'])

    # paths
    for key, val in opt['path'].items():
        if (val is not None) and ('resume_state' in key or 'pretrain_network' in key):
            opt['path'][key] = osp.expanduser(val)

    if is_train:
        experiments_root = osp.join(root_path, 'experiments', opt['name'])
        opt['path']['experiments_root'] = experiments_root
        opt['path']['models'] = osp.join(experiments_root, 'models')
        opt['path']['training_states'] = osp.join(experiments_root, 'training_states')
        opt['path']['log'] = experiments_root
        opt['path']['visualization'] = osp.join(experiments_root, 'visualization')

        # change some options for debug mode
        if 'debug' in opt['name']:
            if 'val' in opt:
                opt['val']['val_freq'] = 8
            opt['logger']['print_freq'] = 1
            opt['logger']['save_checkpoint_freq'] = 8
    else:  # test
        results_root = osp.join(root_path, 'results', opt['name'])
        opt['path']['results_root'] = results_root
        opt['path']['log'] = results_root
        opt['path']['visualization'] = osp.join(results_root, 'visualization')

    return opt, args


@master_only
def copy_opt_file(opt_file, experiments_root):
    # copy the yml file to the experiment root
    import sys
    import time
    from shutil import copyfile
    cmd = ' '.join(sys.argv)
    filename = osp.join(experiments_root, osp.basename(opt_file))
    copyfile(opt_file, filename)

    with open(filename, 'r+') as f:
        lines = f.readlines()
        lines.insert(0, f'# GENERATE TIME: {time.asctime()}\n# CMD:\n# {cmd}\n\n')
        f.seek(0)
        f.writelines(lines)