Spaces:
Runtime error
Runtime error
File size: 9,011 Bytes
cf1798b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 |
"""
A model worker that executes the model based on vLLM.
See documentations at docs/vllm_integration.md
"""
import argparse
import asyncio
import json
from typing import List
from fastapi import FastAPI, Request, BackgroundTasks
from fastapi.responses import StreamingResponse, JSONResponse
import uvicorn
from vllm import AsyncLLMEngine
from vllm.engine.arg_utils import AsyncEngineArgs
from vllm.sampling_params import SamplingParams
from vllm.utils import random_uuid
from fastchat.serve.base_model_worker import BaseModelWorker
from fastchat.serve.model_worker import (
logger,
worker_id,
)
from fastchat.utils import get_context_length
app = FastAPI()
class VLLMWorker(BaseModelWorker):
def __init__(
self,
controller_addr: str,
worker_addr: str,
worker_id: str,
model_path: str,
model_names: List[str],
limit_worker_concurrency: int,
no_register: bool,
llm_engine: AsyncLLMEngine,
conv_template: str,
):
super().__init__(
controller_addr,
worker_addr,
worker_id,
model_path,
model_names,
limit_worker_concurrency,
conv_template,
)
logger.info(
f"Loading the model {self.model_names} on worker {worker_id}, worker type: vLLM worker..."
)
self.tokenizer = llm_engine.engine.tokenizer
self.context_len = get_context_length(llm_engine.engine.model_config.hf_config)
if not no_register:
self.init_heart_beat()
async def generate_stream(self, params):
self.call_ct += 1
context = params.pop("prompt")
request_id = params.pop("request_id")
temperature = float(params.get("temperature", 1.0))
top_p = float(params.get("top_p", 1.0))
top_k = params.get("top_k", -1.0)
presence_penalty = float(params.get("presence_penalty", 0.0))
frequency_penalty = float(params.get("frequency_penalty", 0.0))
max_new_tokens = params.get("max_new_tokens", 256)
stop_str = params.get("stop", None)
stop_token_ids = params.get("stop_token_ids", None) or []
if self.tokenizer.eos_token_id is not None:
stop_token_ids.append(self.tokenizer.eos_token_id)
echo = params.get("echo", True)
use_beam_search = params.get("use_beam_search", False)
best_of = params.get("best_of", None)
# Handle stop_str
stop = set()
if isinstance(stop_str, str) and stop_str != "":
stop.add(stop_str)
elif isinstance(stop_str, list) and stop_str != []:
stop.update(stop_str)
for tid in stop_token_ids:
if tid is not None:
stop.add(self.tokenizer.decode(tid))
# make sampling params in vllm
top_p = max(top_p, 1e-5)
if temperature <= 1e-5:
top_p = 1.0
sampling_params = SamplingParams(
n=1,
temperature=temperature,
top_p=top_p,
use_beam_search=use_beam_search,
stop=list(stop),
max_tokens=max_new_tokens,
top_k=top_k,
presence_penalty=presence_penalty,
frequency_penalty=frequency_penalty,
best_of=best_of,
)
results_generator = engine.generate(context, sampling_params, request_id)
async for request_output in results_generator:
prompt = request_output.prompt
if echo:
text_outputs = [
prompt + output.text for output in request_output.outputs
]
else:
text_outputs = [output.text for output in request_output.outputs]
text_outputs = " ".join(text_outputs)
# Note: usage is not supported yet
prompt_tokens = len(request_output.prompt_token_ids)
completion_tokens = sum(
len(output.token_ids) for output in request_output.outputs
)
ret = {
"text": text_outputs,
"error_code": 0,
"usage": {
"prompt_tokens": prompt_tokens,
"completion_tokens": completion_tokens,
"total_tokens": prompt_tokens + completion_tokens,
},
"cumulative_logprob": [
output.cumulative_logprob for output in request_output.outputs
],
"finish_reason": request_output.outputs[0].finish_reason
if len(request_output.outputs) == 1
else [output.finish_reason for output in request_output.outputs],
}
yield (json.dumps(ret) + "\0").encode()
async def generate(self, params):
async for x in self.generate_stream(params):
pass
return json.loads(x[:-1].decode())
def release_worker_semaphore():
worker.semaphore.release()
def acquire_worker_semaphore():
if worker.semaphore is None:
worker.semaphore = asyncio.Semaphore(worker.limit_worker_concurrency)
return worker.semaphore.acquire()
def create_background_tasks(request_id):
async def abort_request() -> None:
await engine.abort(request_id)
background_tasks = BackgroundTasks()
background_tasks.add_task(release_worker_semaphore)
background_tasks.add_task(abort_request)
return background_tasks
@app.post("/worker_generate_stream")
async def api_generate_stream(request: Request):
params = await request.json()
await acquire_worker_semaphore()
request_id = random_uuid()
params["request_id"] = request_id
generator = worker.generate_stream(params)
background_tasks = create_background_tasks(request_id)
return StreamingResponse(generator, background=background_tasks)
@app.post("/worker_generate")
async def api_generate(request: Request):
params = await request.json()
await acquire_worker_semaphore()
request_id = random_uuid()
params["request_id"] = request_id
output = await worker.generate(params)
release_worker_semaphore()
await engine.abort(request_id)
return JSONResponse(output)
@app.post("/worker_get_status")
async def api_get_status(request: Request):
return worker.get_status()
@app.post("/count_token")
async def api_count_token(request: Request):
params = await request.json()
return worker.count_token(params)
@app.post("/worker_get_conv_template")
async def api_get_conv(request: Request):
return worker.get_conv_template()
@app.post("/model_details")
async def api_model_details(request: Request):
return {"context_length": worker.context_len}
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--host", type=str, default="localhost")
parser.add_argument("--port", type=int, default=21002)
parser.add_argument("--worker-address", type=str, default="http://localhost:21002")
parser.add_argument(
"--controller-address", type=str, default="http://localhost:21001"
)
parser.add_argument("--model-path", type=str, default="lmsys/vicuna-7b-v1.5")
parser.add_argument(
"--model-names",
type=lambda s: s.split(","),
help="Optional display comma separated names",
)
parser.add_argument("--limit-worker-concurrency", type=int, default=1024)
parser.add_argument("--no-register", action="store_true")
parser.add_argument("--num-gpus", type=int, default=1)
parser.add_argument(
"--conv-template", type=str, default=None, help="Conversation prompt template."
)
parser.add_argument(
"--trust_remote_code",
action="store_false",
default=True,
help="Trust remote code (e.g., from HuggingFace) when"
"downloading the model and tokenizer.",
)
parser.add_argument(
"--gpu_memory_utilization",
type=float,
default=0.9,
help="The ratio (between 0 and 1) of GPU memory to"
"reserve for the model weights, activations, and KV cache. Higher"
"values will increase the KV cache size and thus improve the model's"
"throughput. However, if the value is too high, it may cause out-of-"
"memory (OOM) errors.",
)
parser = AsyncEngineArgs.add_cli_args(parser)
args = parser.parse_args()
if args.model_path:
args.model = args.model_path
if args.num_gpus > 1:
args.tensor_parallel_size = args.num_gpus
engine_args = AsyncEngineArgs.from_cli_args(args)
engine = AsyncLLMEngine.from_engine_args(engine_args)
worker = VLLMWorker(
args.controller_address,
args.worker_address,
worker_id,
args.model_path,
args.model_names,
args.limit_worker_concurrency,
args.no_register,
engine,
args.conv_template,
)
uvicorn.run(app, host=args.host, port=args.port, log_level="info")
|