Spaces:
Runtime error
Runtime error
File size: 8,448 Bytes
cf1798b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 |
"""
Usage: python launch_all_serve_by_shell.py --model-path-address "THUDM/chatglm2-6b@localhost@2021" "huggyllama/llama-7b@localhost@2022"
Workers are listed in format of `model-path`@`host`@`port`
The key mechanism behind this scripts is:
1, execute shell cmd to launch the controller/worker/openai-api-server;
2, check the log of controller/worker/openai-api-server to ensure that the serve is launched properly.
Note that a few of non-critical `fastchat.serve` cmd options are not supported currently.
"""
import sys
import os
sys.path.append(os.path.dirname(os.path.dirname(__file__)))
import subprocess
import re
import argparse
LOGDIR = "./logs/"
if not os.path.exists(LOGDIR):
os.makedirs(LOGDIR)
parser = argparse.ArgumentParser()
# ------multi worker-----------------
parser.add_argument(
"--model-path-address",
default="THUDM/chatglm2-6b@localhost@20002",
nargs="+",
type=str,
help="model path, host, and port, formatted as model-path@host@port",
)
# ---------------controller-------------------------
parser.add_argument("--controller-host", type=str, default="localhost")
parser.add_argument("--controller-port", type=int, default=21001)
parser.add_argument(
"--dispatch-method",
type=str,
choices=["lottery", "shortest_queue"],
default="shortest_queue",
)
controller_args = ["controller-host", "controller-port", "dispatch-method"]
# ----------------------worker------------------------------------------
parser.add_argument("--worker-host", type=str, default="localhost")
parser.add_argument("--worker-port", type=int, default=21002)
# parser.add_argument("--worker-address", type=str, default="http://localhost:21002")
# parser.add_argument(
# "--controller-address", type=str, default="http://localhost:21001"
# )
parser.add_argument(
"--model-path",
type=str,
default="lmsys/vicuna-7b-v1.5",
help="The path to the weights. This can be a local folder or a Hugging Face repo ID.",
)
parser.add_argument(
"--revision",
type=str,
default="main",
help="Hugging Face Hub model revision identifier",
)
parser.add_argument(
"--device",
type=str,
choices=["cpu", "cuda", "mps", "xpu", "npu"],
default="cuda",
help="The device type",
)
parser.add_argument(
"--gpus",
type=str,
default="0",
help="A single GPU like 1 or multiple GPUs like 0,2",
)
parser.add_argument("--num-gpus", type=int, default=1)
parser.add_argument(
"--max-gpu-memory",
type=str,
help="The maximum memory per gpu. Use a string like '13Gib'",
)
parser.add_argument("--load-8bit", action="store_true", help="Use 8-bit quantization")
parser.add_argument(
"--cpu-offloading",
action="store_true",
help="Only when using 8-bit quantization: Offload excess weights to the CPU that don't fit on the GPU",
)
parser.add_argument(
"--gptq-ckpt",
type=str,
default=None,
help="Load quantized model. The path to the local GPTQ checkpoint.",
)
parser.add_argument(
"--gptq-wbits",
type=int,
default=16,
choices=[2, 3, 4, 8, 16],
help="#bits to use for quantization",
)
parser.add_argument(
"--gptq-groupsize",
type=int,
default=-1,
help="Groupsize to use for quantization; default uses full row.",
)
parser.add_argument(
"--gptq-act-order",
action="store_true",
help="Whether to apply the activation order GPTQ heuristic",
)
parser.add_argument(
"--model-names",
type=lambda s: s.split(","),
help="Optional display comma separated names",
)
parser.add_argument(
"--limit-worker-concurrency",
type=int,
default=5,
help="Limit the model concurrency to prevent OOM.",
)
parser.add_argument("--stream-interval", type=int, default=2)
parser.add_argument("--no-register", action="store_true")
worker_args = [
"worker-host",
"worker-port",
"model-path",
"revision",
"device",
"gpus",
"num-gpus",
"max-gpu-memory",
"load-8bit",
"cpu-offloading",
"gptq-ckpt",
"gptq-wbits",
"gptq-groupsize",
"gptq-act-order",
"model-names",
"limit-worker-concurrency",
"stream-interval",
"no-register",
"controller-address",
]
# -----------------openai server---------------------------
parser.add_argument("--server-host", type=str, default="localhost", help="host name")
parser.add_argument("--server-port", type=int, default=8001, help="port number")
parser.add_argument(
"--allow-credentials", action="store_true", help="allow credentials"
)
# parser.add_argument(
# "--allowed-origins", type=json.loads, default=["*"], help="allowed origins"
# )
# parser.add_argument(
# "--allowed-methods", type=json.loads, default=["*"], help="allowed methods"
# )
# parser.add_argument(
# "--allowed-headers", type=json.loads, default=["*"], help="allowed headers"
# )
parser.add_argument(
"--api-keys",
type=lambda s: s.split(","),
help="Optional list of comma separated API keys",
)
server_args = [
"server-host",
"server-port",
"allow-credentials",
"api-keys",
"controller-address",
]
args = parser.parse_args()
args = argparse.Namespace(
**vars(args),
**{"controller-address": f"http://{args.controller_host}:{args.controller_port}"},
)
if args.gpus:
if len(args.gpus.split(",")) < args.num_gpus:
raise ValueError(
f"Larger --num-gpus ({args.num_gpus}) than --gpus {args.gpus}!"
)
os.environ["CUDA_VISIBLE_DEVICES"] = args.gpus
# 0,controller, model_worker, openai_api_server
# 1, cmd options
# 2,LOGDIR
# 3, log file name
base_launch_sh = "nohup python3 -m fastchat.serve.{0} {1} >{2}/{3}.log 2>&1 &"
# 0 LOGDIR
#! 1 log file name
# 2 controller, worker, openai_api_server
base_check_sh = """while [ `grep -c "Uvicorn running on" {0}/{1}.log` -eq '0' ];do
sleep 1s;
echo "wait {2} running"
done
echo '{2} running' """
def string_args(args, args_list):
args_str = ""
for key, value in args._get_kwargs():
key = key.replace("_", "-")
if key not in args_list:
continue
key = key.split("-")[-1] if re.search("port|host", key) else key
if not value:
pass
# 1==True -> True
elif isinstance(value, bool) and value == True:
args_str += f" --{key} "
elif (
isinstance(value, list)
or isinstance(value, tuple)
or isinstance(value, set)
):
value = " ".join(value)
args_str += f" --{key} {value} "
else:
args_str += f" --{key} {value} "
return args_str
def launch_worker(item):
log_name = (
item.split("/")[-1]
.split("\\")[-1]
.replace("-", "_")
.replace("@", "_")
.replace(".", "_")
)
args.model_path, args.worker_host, args.worker_port = item.split("@")
print("*" * 80)
worker_str_args = string_args(args, worker_args)
print(worker_str_args)
worker_sh = base_launch_sh.format(
"model_worker", worker_str_args, LOGDIR, f"worker_{log_name}"
)
worker_check_sh = base_check_sh.format(LOGDIR, f"worker_{log_name}", "model_worker")
subprocess.run(worker_sh, shell=True, check=True)
subprocess.run(worker_check_sh, shell=True, check=True)
def launch_all():
controller_str_args = string_args(args, controller_args)
controller_sh = base_launch_sh.format(
"controller", controller_str_args, LOGDIR, "controller"
)
controller_check_sh = base_check_sh.format(LOGDIR, "controller", "controller")
subprocess.run(controller_sh, shell=True, check=True)
subprocess.run(controller_check_sh, shell=True, check=True)
if isinstance(args.model_path_address, str):
launch_worker(args.model_path_address)
else:
for idx, item in enumerate(args.model_path_address):
print(f"loading {idx}th model:{item}")
launch_worker(item)
server_str_args = string_args(args, server_args)
server_sh = base_launch_sh.format(
"openai_api_server", server_str_args, LOGDIR, "openai_api_server"
)
server_check_sh = base_check_sh.format(
LOGDIR, "openai_api_server", "openai_api_server"
)
subprocess.run(server_sh, shell=True, check=True)
subprocess.run(server_check_sh, shell=True, check=True)
if __name__ == "__main__":
launch_all()
|