File size: 15,972 Bytes
e7fcffc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8fb4c97
e7fcffc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
408f8bd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
import gradio as gr
import os
import random
import numpy as np
import pandas as pd
import gdown
import base64
from time import gmtime, strftime
from csv import writer
import json

from datasets import load_dataset
from hfserver import HuggingFaceDatasetSaver, HuggingFaceDatasetJSONSaver

ENVS = ['ShadowHand', 'ShadowHandCatchAbreast', 'ShadowHandOver', 'ShadowHandBlockStack', 'ShadowHandCatchUnderarm',
'ShadowHandCatchOver2Underarm', 'ShadowHandBottleCap', 'ShadowHandLiftUnderarm', 'ShadowHandTwoCatchUnderarm',
'ShadowHandDoorOpenInward', 'ShadowHandDoorOpenOutward', 'ShadowHandDoorCloseInward', 'ShadowHandDoorCloseOutward',
'ShadowHandPushBlock', 'ShadowHandKettle', 
'ShadowHandScissors', 'ShadowHandPen', 'ShadowHandSwingCup', 'ShadowHandGraspAndPlace', 'ShadowHandSwitch']

# download data from huggingface dataset
# dataset = load_dataset("quantumiracle-git/robotinder-data")
# os.remove('.git/hooks/pre-push')  # https://github.com/git-lfs/git-lfs/issues/853
LOAD_DATA_GOOGLE_DRIVE = True
if LOAD_DATA_GOOGLE_DRIVE:  # download data from google drive
    # url = 'https://drive.google.com/drive/folders/1JuNQS4R7axTezWj1x4KRAuRt_L26ApxA?usp=sharing'  # './processed/' folder in google drive
    # url = 'https://drive.google.com/drive/folders/1o8Q9eX-J7F326zv4g2MZWlzR46uVkUF2?usp=sharing'  # './processed_zip/' folder in google drive
    # url = 'https://drive.google.com/drive/folders/1ZWgpPiZwnWfwlwta8Tu-Jtu2HsS7HAEa?usp=share_link'  # './filter_processed_zip/' folder in google drive
    # url = 'https://drive.google.com/drive/folders/1ROkuX6rQpyK7vLqF5fL2mggKiMCdKSuY?usp=share_link'  # './split_processed_zip/' folder in google drive

    # output = './'
    # id = url.split('/')[-1]
    # os.system(f"gdown --id {id} -O {output} --folder --no-cookies --remaining-ok")
    # # VIDEO_PATH = 'processed_zip'
    # # VIDEO_PATH = 'filter_processed_zip'
    # VIDEO_PATH = 'split_processed_zip'

    # import zipfile
    # from os import listdir
    # from os.path import isfile, join, isdir
    # # unzip the zip files to the same location and delete zip files
    # path_to_zip_file = VIDEO_PATH
    # zip_files = [join(path_to_zip_file, f) for f in listdir(path_to_zip_file)]
    # for f in zip_files:
    #     if f.endswith(".zip"):
    #         directory_to_extract_to = path_to_zip_file # extracted file itself contains a folder
    #         print(f'extract data {f} to {directory_to_extract_to}')
    #         with zipfile.ZipFile(f, 'r') as zip_ref:
    #             zip_ref.extractall(directory_to_extract_to)
    #         os.remove(f)

    ### multiple urls to handle the retrieve error
    import zipfile
    from os import listdir
    from os.path import isfile, join, isdir
    # urls = [
    #     'https://drive.google.com/drive/folders/1BbQe4XtcsalsvwGVLW9jWCkr-ln5pvyf?usp=share_link',  # './filter_processed_zip/1' folder in google drive
    #     'https://drive.google.com/drive/folders/1saUTUuObPhMJFguc2J_O0K5woCJjYHci?usp=share_link',  # './filter_processed_zip/2' folder in google drive
    #     'https://drive.google.com/drive/folders/1Kh9_E28-RH8g8EP1V3DhGI7KRs9LB7YJ?usp=share_link',  # './filter_processed_zip/3' folder in google drive
    #     'https://drive.google.com/drive/folders/1oE75Dz6hxtaSpNhjD22PmQfgQ-PjnEc0?usp=share_link',  # './filter_processed_zip/4' folder in google drive
    #     'https://drive.google.com/drive/folders/1XSPEKFqNHpXdLho-bnkT6FZZXssW8JkC?usp=share_link',  # './filter_processed_zip/5' folder in google drive
    #     'https://drive.google.com/drive/folders/1XwjAHqR7kF1uSyZZIydQMoETfdvi0aPD?usp=share_link',
    #     'https://drive.google.com/drive/folders/1TceozOWhLsbqP-w-RkforjAVo1M2zsRP?usp=share_link',
    #     'https://drive.google.com/drive/folders/1zAP9eDSW5Eh_isACuZJadXcFaJNqEM9u?usp=share_link',
    #     'https://drive.google.com/drive/folders/1oK8fyF9A3Pv5JubvrQMjTE9n66vYlyZN?usp=share_link',
    #     'https://drive.google.com/drive/folders/1cezGNjlM0ONMM6C0N_PbZVCGsTyVSR0w?usp=share_link',
    # ]

    urls = [
        'https://drive.google.com/drive/folders/1SF5jQ7HakO3lFXBon57VP83-AwfnrM3F?usp=share_link',  # './split_processed_zip/1' folder in google drive
        'https://drive.google.com/drive/folders/13WuS6ow6sm7ws7A5xzCEhR-2XX_YiIu5?usp=share_link',  # './split_processed_zip/2' folder in google drive
        'https://drive.google.com/drive/folders/1GWLffJDOyLkubF2C03UFcB7iFpzy1aDy?usp=share_link',  # './split_processed_zip/3' folder in google drive
        'https://drive.google.com/drive/folders/1UKAntA7WliD84AUhRN224PkW4vt9agZW?usp=share_link',  # './split_processed_zip/4' folder in google drive
        'https://drive.google.com/drive/folders/11cCQw3qb1vJbviVPfBnOVWVzD_VzHdWs?usp=share_link',  # './split_processed_zip/5' folder in google drive
        'https://drive.google.com/drive/folders/1Wvy604wCxEdXAwE7r3sE0L0ieXvM__u8?usp=share_link',
        'https://drive.google.com/drive/folders/1BTv_pMTNGm7m3hD65IgBrX880v-rLIaf?usp=share_link',
        'https://drive.google.com/drive/folders/12x7F11ln2VQkqi8-Mu3kng74eLgifM0N?usp=share_link',
        'https://drive.google.com/drive/folders/1OWkOul2CCrqynqpt44Fu1CBxzNNfOFE2?usp=share_link',
        'https://drive.google.com/drive/folders/1ukwsfrbSEqCBNmRSuAYvYBHijWCQh2OU?usp=share_link',
        'https://drive.google.com/drive/folders/1EO7zumR6sVfsWQWCS6zfNs5WuO2Se6WX?usp=share_link',
        'https://drive.google.com/drive/folders/1aw0iBWvvZiSKng0ejRK8xbNoHLVUFCFu?usp=share_link',
        'https://drive.google.com/drive/folders/1szIcxlVyT5WJtzpqYWYlue0n82A6-xtk?usp=share_link',
    ]

    output = './'
    # VIDEO_PATH = 'processed_zip'
    # VIDEO_PATH = 'filter_processed_zip'
    VIDEO_PATH = 'split_processed_zip'
    for i, url in enumerate(urls):
        id = url.split('/')[-1]
        os.system(f"gdown --id {id} -O {output} --folder --no-cookies --remaining-ok")

        # unzip the zip files to the same location and delete zip files
        path_to_zip_file = str(i+1)
        zip_files = [join(path_to_zip_file, f) for f in listdir(path_to_zip_file)]
        for f in zip_files:
            if f.endswith(".zip"):
                directory_to_extract_to = VIDEO_PATH # extracted file itself contains a folder
                print(f'extract data {f} to {directory_to_extract_to}')
                with zipfile.ZipFile(f, 'r') as zip_ref:
                    zip_ref.extractall(directory_to_extract_to)
                os.remove(f)

else:  # local data
    VIDEO_PATH = 'robotinder-data'

VIDEO_INFO = os.path.join(VIDEO_PATH, 'video_info.json')

def inference(video_path):
    # for displaying mp4 with autoplay on Gradio
    with open(video_path, "rb") as f:
        data = f.read()
        b64 = base64.b64encode(data).decode()
    html = (
            f"""
            <video controls autoplay muted loop>
            <source src="data:video/mp4;base64,{b64}" type="video/mp4">
            </video> 
            """
    )
    return html

def video_identity(video):
    return video

def nan():
    return None

FORMAT = ['mp4', 'gif'][0]

def get_huggingface_dataset():
    try:
        import huggingface_hub
    except (ImportError, ModuleNotFoundError):
        raise ImportError(
            "Package `huggingface_hub` not found is needed "
            "for HuggingFaceDatasetSaver. Try 'pip install huggingface_hub'."
        )
    HF_TOKEN = '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'  # my HF token
    DATASET_NAME = 'crowdsourced-robotinder-demo'
    FLAGGING_DIR = 'flag/'
    path_to_dataset_repo = huggingface_hub.create_repo(
        repo_id=DATASET_NAME,
        token=HF_TOKEN,
        private=False,
        repo_type="dataset",
        exist_ok=True,
    )    
    dataset_dir = os.path.join(DATASET_NAME, FLAGGING_DIR)
    repo = huggingface_hub.Repository(
        local_dir=dataset_dir,
        clone_from=path_to_dataset_repo,
        use_auth_token=HF_TOKEN,
    )
    repo.git_pull(lfs=True)
    log_file = os.path.join(dataset_dir, "flag_data.csv")
    return repo, log_file

def update(user_choice, left, right, choose_env, data_folder=VIDEO_PATH, flag_to_huggingface=True):
    global last_left_video_path 
    global last_right_video_path 
    global last_infer_left_video_path
    global last_infer_right_video_path
    
    if flag_to_huggingface: # log
        env_name = str(last_left_video_path).split('/')[1]  # 'robotinder-data/ENV_NAME/'
        current_time = strftime("%Y-%m-%d-%H-%M-%S", gmtime())
        info = [env_name, user_choice, last_left_video_path, last_right_video_path, current_time]
        print(info)
        repo, log_file = get_huggingface_dataset()
        with open(log_file, 'a') as file: # incremental change of the file
            writer_object = writer(file)
            writer_object.writerow(info)
            file.close()
        if int(current_time.split('-')[-2]) % 5 == 0:  # push only on certain minutes
            try:
                repo.push_to_hub(commit_message=f"Flagged sample at {current_time}")
            except:
                repo.git_pull(lfs=True)  # sync with remote first
                repo.push_to_hub(commit_message=f"Flagged sample at {current_time}")
    if choose_env == 'Random' or choose_env == '': # random or no selection
        envs = get_env_names()   
        env_name = envs[random.randint(0, len(envs)-1)]
    else:
        env_name = choose_env
    # choose video
    left, right = randomly_select_videos(env_name)

    last_left_video_path = left
    last_right_video_path = right
    last_infer_left_video_path = inference(left)
    last_infer_right_video_path = inference(right)
    
    return last_infer_left_video_path, last_infer_right_video_path, env_name

def replay(left, right):  
    return left, right

def parse_envs(folder=VIDEO_PATH, filter=True, MAX_ITER=20000, DEFAULT_ITER=20000):
    """
    return a dict of env_name: video_paths
    """
    files = {}
    if filter:
        df = pd.read_csv('Bidexhands_Video.csv')
        # print(df)
    for env_name in os.listdir(folder):
        env_path = os.path.join(folder, env_name)
        if os.path.isdir(env_path):
            videos = os.listdir(env_path)
            video_files = []
            for video in videos:  # video name rule: EnvName_Alg_Seed_Timestamp_Checkpoint_video-episode-EpisodeID
                if video.endswith(f'.{FORMAT}'):
                    if filter:
                        if len(video.split('_')) < 6:
                            print(f'{video} is wrongly named.')
                        seed = video.split('_')[2]
                        checkpoint = video.split('_')[4]
                        try:
                            succeed_iteration = df.loc[(df['seed'] == int(seed)) & (df['env_name'] == str(env_name))]['succeed_iteration'].iloc[0]
                        except:
                            print(f'Env {env_name} with seed {seed} not found in Bidexhands_Video.csv')
                            
                        if 'unsolved' in succeed_iteration:
                            continue
                        elif pd.isnull(succeed_iteration):
                            min_iter = DEFAULT_ITER
                            max_iter = MAX_ITER
                        elif '-' in succeed_iteration:
                            [min_iter, max_iter] = succeed_iteration.split('-')
                        else:
                            min_iter = succeed_iteration
                            max_iter = MAX_ITER

                        # check if the checkpoint is in the valid range
                        valid_checkpoints = np.arange(int(min_iter), int(max_iter)+1000, 1000)
                        if int(checkpoint) not in valid_checkpoints:
                            continue
                    
                    video_path = os.path.join(folder, env_name, video)
                    video_files.append(video_path)
                    # print(video_path)

            files[env_name] = video_files

    with open(VIDEO_INFO, 'w') as fp:
        json.dump(files, fp)

    return files

def get_env_names():
    with open(VIDEO_INFO, 'r') as fp:
        files = json.load(fp)
    return list(files.keys())

def randomly_select_videos(env_name):
    # load the parsed video info
    with open(VIDEO_INFO, 'r') as fp:
        files = json.load(fp)
    env_files = files[env_name]
    # randomly choose two videos
    selected_video_ids = np.random.choice(len(env_files), 2, replace=False)
    left_video_path = env_files[selected_video_ids[0]]
    right_video_path = env_files[selected_video_ids[1]]
    return left_video_path, right_video_path

def build_interface(iter=3, data_folder=VIDEO_PATH):
    import sys
    import csv
    csv.field_size_limit(sys.maxsize)
    
    HF_TOKEN = os.getenv('HF_TOKEN')
    print(HF_TOKEN)
    HF_TOKEN = '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'  # my HF token
    # hf_writer = gr.HuggingFaceDatasetSaver(HF_TOKEN, "crowdsourced-robotinder-demo")  # HuggingFace logger instead of local one: https://github.com/gradio-app/gradio/blob/master/gradio/flagging.py
    hf_writer = HuggingFaceDatasetSaver(HF_TOKEN, "crowdsourced-robotinder-demo")
    # callback = gr.CSVLogger()
    callback = hf_writer

    # parse the video folder 
    files = parse_envs()   
    
    # build gradio interface
    with gr.Blocks() as demo:
        gr.Markdown("## Here is <span style=color:cyan>RoboTinder</span>!")
        gr.Markdown("### Select the best robot behaviour in your choice!")
        # some initial values
        env_name = list(files.keys())[random.randint(0, len(files)-1)] # random pick an env 
        with gr.Row():
            str_env_name = gr.Markdown(f"{env_name}")

        # choose video
        left_video_path, right_video_path = randomly_select_videos(env_name)
        
        with gr.Row():
            if FORMAT == 'mp4':
                # left = gr.PlayableVideo(left_video_path, label="left_video")
                # right = gr.PlayableVideo(right_video_path, label="right_video")

                infer_left_video_path = inference(left_video_path)
                infer_right_video_path = inference(right_video_path)
                right = gr.HTML(infer_right_video_path, label="right_video")
                left = gr.HTML(infer_left_video_path, label="left_video")
            else:
                left = gr.Image(left_video_path, shape=(1024, 768), label="left_video")
                # right = gr.Image(right_video_path).style(height=768, width=1024)
                right = gr.Image(right_video_path, label="right_video")

        global last_left_video_path 
        last_left_video_path = left_video_path
        global last_right_video_path 
        last_right_video_path = right_video_path

        global last_infer_left_video_path
        last_infer_left_video_path = infer_left_video_path
        global last_infer_right_video_path
        last_infer_right_video_path = infer_right_video_path

        # btn1 = gr.Button("Replay")
        user_choice = gr.Radio(["Left", "Right", "Not Sure"], label="Which one is your favorite?")
        choose_env = gr.Radio(["Random"]+ENVS, label="Choose the next task:")
        btn2 = gr.Button("Next")

        # This needs to be called at some point prior to the first call to callback.flag()
        callback.setup([user_choice, left, right], "flagged_data_points")
        
        # btn1.click(fn=replay, inputs=[left, right], outputs=[left, right])
        btn2.click(fn=update, inputs=[user_choice, left, right, choose_env], outputs=[left, right, str_env_name])

        # We can choose which components to flag -- in this case, we'll flag all of them
        # btn2.click(lambda *args: callback.flag(args), [user_choice, left, right], None, preprocess=False)  # not using the gradio flagging anymore

    return demo

if __name__ == "__main__":
    last_left_video_path = None
    last_right_video_path = None

    demo = build_interface()
    # demo.launch(share=True)
    demo.launch(share=False)