Spaces:
Configuration error
Configuration error
File size: 4,438 Bytes
01800de |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 |
import gradio as gr
import torch
from diffusers import DDIMScheduler, StableDiffusionPipeline
stable_model_list = [
"runwayml/stable-diffusion-v1-5",
"stabilityai/stable-diffusion-2-1",
"sd-dreambooth-library/disco-diffusion-style",
"prompthero/openjourney-v2",
"andite/anything-v4.0",
"Lykon/DreamShaper",
"nitrosocke/Nitro-Diffusion",
"dreamlike-art/dreamlike-diffusion-1.0",
]
stable_prompt_list = ["a photo of a man.", "a photo of a girl."]
stable_negative_prompt_list = ["bad, ugly", "deformed"]
def stable_diffusion_text2img(
model_path: str,
prompt: str,
negative_prompt: str,
guidance_scale: int,
num_inference_step: int,
height: int,
width: int,
):
pipe = StableDiffusionPipeline.from_pretrained(
model_path, safety_checker=None, torch_dtype=torch.float16
).to("cuda")
pipe.scheduler = DDIMScheduler.from_config(pipe.scheduler.config)
pipe.enable_xformers_memory_efficient_attention()
images = pipe(
prompt,
height=height,
width=width,
negative_prompt=negative_prompt,
num_inference_steps=num_inference_step,
guidance_scale=guidance_scale,
).images
return images[0]
def stable_diffusion_text2img_app():
with gr.Blocks():
with gr.Row():
with gr.Column():
text2image_model_path = gr.Dropdown(
choices=stable_model_list,
value=stable_model_list[0],
label="Text-Image Model Id",
)
text2image_prompt = gr.Textbox(
lines=1, value=stable_prompt_list[0], label="Prompt"
)
text2image_negative_prompt = gr.Textbox(
lines=1,
value=stable_negative_prompt_list[0],
label="Negative Prompt",
)
with gr.Accordion("Advanced Options", open=False):
text2image_guidance_scale = gr.Slider(
minimum=0.1,
maximum=15,
step=0.1,
value=7.5,
label="Guidance Scale",
)
text2image_num_inference_step = gr.Slider(
minimum=1,
maximum=100,
step=1,
value=50,
label="Num Inference Step",
)
text2image_height = gr.Slider(
minimum=128,
maximum=1280,
step=32,
value=512,
label="Image Height",
)
text2image_width = gr.Slider(
minimum=128,
maximum=1280,
step=32,
value=768,
label="Image Width",
)
text2image_predict = gr.Button(value="Generator")
with gr.Column():
output_image = gr.Image(label="Output")
gr.Examples(
examples=[
[
stable_model_list[0],
stable_prompt_list[0],
stable_negative_prompt_list[0],
7.5,
50,
512,
768,
]
],
inputs=[
text2image_model_path,
text2image_prompt,
text2image_negative_prompt,
text2image_guidance_scale,
text2image_num_inference_step,
text2image_height,
text2image_width,
],
outputs=[output_image],
cache_examples=False,
fn=stable_diffusion_text2img,
label="Text2Image Example",
)
text2image_predict.click(
fn=stable_diffusion_text2img,
inputs=[
text2image_model_path,
text2image_prompt,
text2image_negative_prompt,
text2image_guidance_scale,
text2image_num_inference_step,
text2image_height,
text2image_width,
],
outputs=output_image,
)
|