Spaces:
Configuration error
Configuration error
File size: 3,235 Bytes
01800de |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 |
import gradio as gr
import torch
from diffusers import DDIMScheduler, DiffusionPipeline
stable_inpiant_model_list = [
"stabilityai/stable-diffusion-2-inpainting",
"runwayml/stable-diffusion-inpainting",
]
stable_prompt_list = ["a photo of a man.", "a photo of a girl."]
stable_negative_prompt_list = ["bad, ugly", "deformed"]
def stable_diffusion_inpaint(
dict: str,
model_path: str,
prompt: str,
negative_prompt: str,
guidance_scale: int,
num_inference_step: int,
):
image = dict["image"].convert("RGB").resize((512, 512))
mask_image = dict["mask"].convert("RGB").resize((512, 512))
pipe = DiffusionPipeline.from_pretrained(
model_path,
revision="fp16",
torch_dtype=torch.float16,
)
pipe.to("cuda")
pipe.scheduler = DDIMScheduler.from_config(pipe.scheduler.config)
pipe.enable_xformers_memory_efficient_attention()
output = pipe(
prompt=prompt,
image=image,
mask_image=mask_image,
negative_prompt=negative_prompt,
num_inference_steps=num_inference_step,
guidance_scale=guidance_scale,
).images
return output[0]
def stable_diffusion_inpaint_app():
with gr.Blocks():
with gr.Row():
with gr.Column():
inpaint_image_file = gr.Image(
source="upload",
tool="sketch",
elem_id="image_upload",
type="pil",
label="Upload",
)
inpaint_model_id = gr.Dropdown(
choices=stable_inpiant_model_list,
value=stable_inpiant_model_list[0],
label="Inpaint Model Id",
)
inpaint_prompt = gr.Textbox(
lines=1, value=stable_prompt_list[0], label="Prompt"
)
inpaint_negative_prompt = gr.Textbox(
lines=1,
value=stable_negative_prompt_list[0],
label="Negative Prompt",
)
with gr.Accordion("Advanced Options", open=False):
inpaint_guidance_scale = gr.Slider(
minimum=0.1,
maximum=15,
step=0.1,
value=7.5,
label="Guidance Scale",
)
inpaint_num_inference_step = gr.Slider(
minimum=1,
maximum=100,
step=1,
value=50,
label="Num Inference Step",
)
inpaint_predict = gr.Button(value="Generator")
with gr.Column():
output_image = gr.Gallery(label="Outputs")
inpaint_predict.click(
fn=stable_diffusion_inpaint,
inputs=[
inpaint_image_file,
inpaint_model_id,
inpaint_prompt,
inpaint_negative_prompt,
inpaint_guidance_scale,
inpaint_num_inference_step,
],
outputs=output_image,
)
|