File size: 3,859 Bytes
01800de
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
import gradio as gr
import torch
from diffusers import DDIMScheduler, StableDiffusionImg2ImgPipeline
from PIL import Image

stable_model_list = [
    "runwayml/stable-diffusion-v1-5",
    "stabilityai/stable-diffusion-2-1",
]

stable_prompt_list = ["a photo of a man.", "a photo of a girl."]

stable_negative_prompt_list = ["bad, ugly", "deformed"]

data_list = [
    "data/test.png",
]


def stable_diffusion_img2img(
    image_path: str,
    model_path: str,
    prompt: str,
    negative_prompt: str,
    guidance_scale: int,
    num_inference_step: int,
):

    image = Image.open(image_path)

    pipe = StableDiffusionImg2ImgPipeline.from_pretrained(
        model_path, safety_checker=None, torch_dtype=torch.float16
    )
    pipe.to("cuda")
    pipe.scheduler = DDIMScheduler.from_config(pipe.scheduler.config)
    pipe.enable_xformers_memory_efficient_attention()

    output = pipe(
        prompt=prompt,
        image=image,
        negative_prompt=negative_prompt,
        num_inference_steps=num_inference_step,
        guidance_scale=guidance_scale,
    ).images

    return output[0]


def stable_diffusion_img2img_app():
    with gr.Blocks():
        with gr.Row():
            with gr.Column():
                image2image2_image_file = gr.Image(
                    type="filepath", label="Image"
                )

                image2image_model_path = gr.Dropdown(
                    choices=stable_model_list,
                    value=stable_model_list[0],
                    label="Image-Image Model Id",
                )

                image2image_prompt = gr.Textbox(
                    lines=1, value=stable_prompt_list[0], label="Prompt"
                )

                image2image_negative_prompt = gr.Textbox(
                    lines=1,
                    value=stable_negative_prompt_list[0],
                    label="Negative Prompt",
                )

                with gr.Accordion("Advanced Options", open=False):
                    image2image_guidance_scale = gr.Slider(
                        minimum=0.1,
                        maximum=15,
                        step=0.1,
                        value=7.5,
                        label="Guidance Scale",
                    )

                    image2image_num_inference_step = gr.Slider(
                        minimum=1,
                        maximum=100,
                        step=1,
                        value=50,
                        label="Num Inference Step",
                    )

                image2image_predict = gr.Button(value="Generator")

            with gr.Column():
                output_image = gr.Image(label="Output")

        gr.Examples(
            fn=stable_diffusion_img2img,
            examples=[
                [
                    data_list[0],
                    stable_model_list[0],
                    stable_prompt_list[0],
                    stable_negative_prompt_list[0],
                    7.5,
                    50,
                ],
            ],
            inputs=[
                image2image2_image_file,
                image2image_model_path,
                image2image_prompt,
                image2image_negative_prompt,
                image2image_guidance_scale,
                image2image_num_inference_step,
            ],
            outputs=[output_image],
            cache_examples=False,
            label="Image-Image Generator",
        )

        image2image_predict.click(
            fn=stable_diffusion_img2img,
            inputs=[
                image2image2_image_file,
                image2image_model_path,
                image2image_prompt,
                image2image_negative_prompt,
                image2image_guidance_scale,
                image2image_num_inference_step,
            ],
            outputs=[output_image],
        )