File size: 7,965 Bytes
baaf065 c38d116 baaf065 c38d116 baaf065 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 |
import ast
import pandas as pd
import streamlit as st
st.set_page_config(layout="wide")
SHORT_CAPTIONS = [
'ALIGN:align-base:coyo700m', 'OpenCLIP:ViT-B-32:openai', 'OpenCLIP:ViT-B-16:openai',
'OpenCLIP:ViT-L-14:openai', 'OpenCLIP:ViT-L-14-336:openai',
'OpenCLIP:ViT-B-32:laion2b_s34b_b79k', 'OpenCLIP:ViT-B-16:laion2b_s34b_b88k',
'OpenCLIP:ViT-L-14:laion2b_s32b_b82k', 'OpenCLIP:ViT-g-14:laion2b_s34b_b88k',
'OpenCLIP:ViT-H-14:laion2b_s32b_b79k', 'OpenCLIP:roberta-ViT-B-32:laion2b_s12b_b32k',
'OpenCLIP:ViT-B-16-SigLIP:webli', 'OpenCLIP:ViT-B-16-SigLIP-384:webli',
'OpenCLIP:ViT-L-16-SigLIP-256:webli', 'OpenCLIP:ViT-L-16-SigLIP-384:webli',
'OpenCLIP:ViT-SO400M-14-SigLIP:webli', 'OpenCLIP:coca_ViT-B-32:laion2b_s13b_b90k',
'OpenCLIP:coca_ViT-L-14:laion2b_s13b_b90k'
]
LONG_CAPTIONS = [
'DreamLIP:dreamlip-vitb16:cc3m-long', 'DreamLIP:dreamlip-vitb16:cc12m-long',
'DreamLIP:dreamlip-vitb16:yfcc15m-long', 'DreamLIP:dreamlip-vitb16:cc30m-long',
"FLAIR:flair-vitb16:cc3m-recap", "FLAIR:flair-vitb16:cc12m-recap",
"FLAIR:flair-vitb16:yfcc15m-recap", "FLAIR:flair-vitb16:cc30m-recap",
'CLIPS:CLIPS-Large-14-224:recap-datacomp1b', 'CLIPS:CLIPS-Large-14-336:recap-datacomp1b',
'CLIPS:CLIPS-Huge-14-224:recap-datacomp1b', 'LoTLIP:LoTLIP-ViT-B-32:lotlip100m',
'LoTLIP:LoTLIP-ViT-B-16:lotlip100m', 'Recap-CLIP:ViT-L-16-HTxt-Recap-CLIP:recap-datacomp1b',
'LongCLIP:longclip-vitb32:sharegpt4v-1m', 'LongCLIP:longclip-vitb16:sharegpt4v-1m',
'LongCLIP:longclip-vitl14:sharegpt4v-1m', 'LongCLIP:longclip-vitl14_336px:sharegpt4v-1m',
'Jina-CLIP:jina-clip-v1:jinaai', 'Jina-CLIP:jina-clip-v2:jinaai'
]
COMPOSITIONALITY = [
'OpenCLIP:ViT-B-32:openai', 'StructuredCLIP:NegCLIP-ViT-B-32:coco-ft',
'StructuredCLIP:CE-CLIP-ViT-B-32:coco-ft', 'StructuredCLIP:DAC-LLM-ViT-B-32:cc3m-ft',
'StructuredCLIP:DAC-SAM-ViT-B-32:cc3m-ft', 'FSC-CLIP:fsc-clip-ViT-B-32:laioncoco-ft',
'FSC-CLIP:fsc-clip-ViT-B-16:laioncoco-ft', 'FSC-CLIP:fsc-clip-ViT-L-14:laioncoco-ft'
]
DECODERS = [
'vqascore:instructblip-flant5-xl:none', 'vqascore:clip-flant5-xl:none',
'vqascore:llava-v1.5-7b:none', 'vqascore:sharegpt4v-7b:none',
'visualgptscore:instructblip-flant5-xl:none', 'visualgptscore:clip-flant5-xl:none',
'visualgptscore:llava-v1.5-7b:none', 'visualgptscore:sharegpt4v-7b:none'
]
MODEL_GROUPS = {
"short_captions": SHORT_CAPTIONS,
"long_captions": LONG_CAPTIONS,
"compositionality": COMPOSITIONALITY
}
def render_mi_table(df, level0_cols):
# HTML 스타일 정의
table_style = """
<style>
table {
width: 100%;
border-collapse: collapse;
}
th, td {
border: 1px solid black;
text-align: center;
padding: 8px;
}
th {
background-color: #262730;
}
</style>
"""
# 상위 헤더 (레벨 0)
header_html = "<tr>"
for col in level0_cols:
colspan = len(df.xs(col, axis=1, level=0).columns) if col else 1
header_html += f'<th colspan="{colspan}" style="text-align: center;">{col if col else ""}</th>'
header_html += "</tr>"
# 하위 헤더 (레벨 1)
sub_header_html = "<tr>"
for col in df.columns:
sub_header_html += f"<th style='text-align: center;'>{col[1] if len(col) > 1 else col[0]}</th>"
sub_header_html += "</tr>"
# 데이터 HTML 생성
def map_val(value):
try:
value = f"{float(value):.1f}"
except:
value = value
return value
rows_html = ""
for _, row in df.iterrows():
rows_html += "<tr>" + "".join(f"<td>{map_val(value)}</td>" for value in row) + "</tr>"
# 최종 HTML 합치기
table_html = f"""
{table_style}
<table>
{header_html}
{sub_header_html}
{rows_html}
</table>
"""
return table_html
def format_df(df):
cols = []
for col in df.columns:
if col in [("Model", "family"), ("Model", "model"), ("Model", "tag")]:
continue
cols.append(col)
formatted_df = df.style.format({col: "{:.1f}" for col in cols})
return formatted_df
def print_table(df):
level0_cols = []
for col in df.columns:
if col[0] not in level0_cols:
level0_cols.append(col[0])
st.markdown(render_mi_table(df, level0_cols), unsafe_allow_html=True)
def get_model_key_from_df(df, model_names):
columns = [("Model", "family"), ("Model", "model"), ("Model", "tag")]
named_rows = df[columns].apply(lambda row: ":".join(row), axis=1)
new_rows = []
for name in model_names:
new_rows.append(df[named_rows == name])
new_rows = pd.concat(new_rows, axis=0)
new_rows.columns = pd.MultiIndex.from_tuples(new_rows.columns)
print_table(new_rows)
# Streamlit app
def main():
st.title("Interface")
st.markdown("### Summarized Evaluation Results on Sentence Addition Tasks")
st.markdown("- random chance 50% 반영")
st.markdown("- decoder-based model 결과 추가")
st.markdown("- FLAIR model 결과 추가 (context length 77)")
df = pd.read_csv("data/250117/summary.csv")
df.columns = [ast.literal_eval(col) for col in df.columns]
for group, model_names in MODEL_GROUPS.items():
st.markdown(f"## {group} models")
if group == "short_captions":
st.markdown(
"- **Length group**: 이미 short group부터, 80<(Num_tokens)<120. 중간에 문장 더해졌으면 60-70%정도 맞추고, 끝에 문장 더해졌으면 애초에 added sentence encoding 불가 -> accuracy 는 random chance, 50%."
)
st.markdown(
"- **neg_target**: description의 끝 (=background)에 sentence 더해진 경우 accuracy 50%"
)
st.markdown("- **neg_type**: contradictory sentence가 모델 입장에서 맞추기 더 어려움")
if group == "long_captions":
st.markdown(
"- **Length group**: 모델의 context length에 성능 심하게 dependent함. DreamLIP: 77, CLIPS: 80, LoTLIP: 128, Recap-CLIP: 128, LongCLIP: 248, Jina-CLIP: 512"
)
st.markdown("- **neg_target**: 여전히 background level에서 sentence 더해진게 전반적으로 어려움")
st.markdown("- **neg_type**: contradictory sentence가 모델 입장에서 맞추기 더 어려움")
if group == "compositionality":
st.markdown("- context length 77의 한계. Hard Negative Caption으로 Fine-tuning 하면 일부 좋아짐")
get_model_key_from_df(df, model_names)
df = pd.read_csv("data/250117/decoder_summary.csv")
df.columns = [ast.literal_eval(col) for col in df.columns]
st.markdown("## Decoder-based models")
st.markdown(
"- InstructBLIP은 text input context length가 128 -> medium length group부터 헷갈리기 시작 (vqascore, visualgptscore 모두.)"
)
st.markdown(
"- 나머지 세 모델은 vision+language 토탈 2048 context length (충분함). VQAScore에서 high performance, VisualGPTScore은 거의 random chance."
)
st.markdown(
"- visualgptscore는 given caption의 매 token 위치마다 auto-regressive cross-entropy loss의 avg으로 계산됨 (like image captioning)"
)
st.markdown(
"- vqascore는 given caption을 question에 넣고, yes/no 형식 question으로 물어봄 -> answer token 위치에서 cross entropy loss으로 계산"
)
st.markdown(
"- 즉 long text generative task는 약한데 qa 능력은 좋아서 visualgptscore는 낮고, vqascore가 더 높게 나온다고 추측가능"
)
get_model_key_from_df(df, DECODERS)
if __name__ == "__main__":
main()
|