File size: 6,069 Bytes
fd1c028
092fcaa
 
 
fd1c028
 
092fcaa
 
 
fd1c028
420a964
092fcaa
 
 
 
 
 
 
 
fd1c028
092fcaa
 
 
 
 
 
 
 
 
420a964
092fcaa
d639c7d
fd1c028
420a964
fd1c028
 
 
 
 
 
 
092fcaa
fd1c028
 
 
420a964
d639c7d
420a964
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fd1c028
4b1b707
d639c7d
 
 
420a964
d639c7d
 
 
 
420a964
d639c7d
420a964
d639c7d
 
 
420a964
d639c7d
 
420a964
d639c7d
 
 
 
420a964
092fcaa
420a964
d639c7d
 
 
 
 
 
 
092fcaa
d639c7d
 
 
 
092fcaa
fd1c028
420a964
33739c5
 
47782a8
fc4a6c8
47782a8
 
 
fc4a6c8
33739c5
 
 
 
 
 
420a964
fd1c028
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
import gradio as gr
from diffusers import ControlNetModel, StableDiffusionXLControlNetPipeline, AutoencoderKL
from diffusers.utils import load_image
from transformers import DPTImageProcessor, DPTForDepthEstimation
import torch
import sa_handler
import pipeline_calls



# Initialize models
depth_estimator = DPTForDepthEstimation.from_pretrained("Intel/dpt-hybrid-midas").to("cuda")
feature_processor = DPTImageProcessor.from_pretrained("Intel/dpt-hybrid-midas")

controlnet = ControlNetModel.from_pretrained(
    "diffusers/controlnet-depth-sdxl-1.0",
    variant="fp16",
    use_safetensors=True,
    torch_dtype=torch.float16,
).to("cuda")
vae = AutoencoderKL.from_pretrained("madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16).to("cuda")
pipeline = StableDiffusionXLControlNetPipeline.from_pretrained(
    "stabilityai/stable-diffusion-xl-base-1.0",
    controlnet=controlnet,
    vae=vae,
    variant="fp16",
    use_safetensors=True,
    torch_dtype=torch.float16,
).to("cuda")
# Configure pipeline for CPU offloading and VAE slicing
pipeline.enable_model_cpu_offload()
pipeline.enable_vae_slicing()

# Initialize style-aligned handler
sa_args = sa_handler.StyleAlignedArgs(share_group_norm=False,
                                      share_layer_norm=False,
                                      share_attention=True,
                                      adain_queries=True,
                                      adain_keys=True,
                                      adain_values=False,
                                     )
handler = sa_handler.Handler(pipeline)
handler.register(sa_args, )


# Function to run ControlNet depth with StyleAligned
def style_aligned_controlnet(ref_style_prompt, depth_map, ref_image, img_generation_prompt):
    try:
        if depth_map == True:
            image = load_image(ref_image)
            depth_image = pipeline_calls.get_depth_map(image, feature_processor, depth_estimator)
        else:
            depth_image = load_image(ref_image).resize((1024, 1024))
        controlnet_conditioning_scale = 0.8
        num_images_per_prompt = 3 # adjust according to VRAM size
        latents = torch.randn(1 + num_images_per_prompt, 4, 128, 128).to(pipeline.unet.dtype)
        latents[1:] = torch.randn(num_images_per_prompt, 4, 128, 128).to(pipeline.unet.dtype)
        images = pipeline_calls.controlnet_call(pipeline, [ref_style_prompt, img_generation_prompt],
                                                image=depth_image,
                                                num_inference_steps=50,
                                                controlnet_conditioning_scale=controlnet_conditioning_scale,
                                                num_images_per_prompt=num_images_per_prompt,
                                                latents=latents)
        return [images[0], depth_image] +  images[1:], gr.Image(value=images[0], visible=True)
    except Exception as e:
        raise gr.Error(f"Error in generating images:{e}")

# Create a Gradio UI
with gr.Blocks() as demo:
    gr.HTML('<h1 style="text-align: center;">Style-aligned with ControlNet Depth</h1>')
    with gr.Row():
      
      with gr.Column(variant='panel'):
        # Textbox for reference style prompt
        ref_style_prompt = gr.Textbox(
          label='Reference style prompt',
          info="Enter a Prompt to generate the reference image", placeholder='a poster in <style name> style'
        )
        # Checkbox for using controller depth-map
        depth_map = gr.Checkbox(label='Depth-map',)
        # Image display for the generated reference style image
        ref_style_image = gr.Image(visible=False, label='Reference style image')
      
      with gr.Column(variant='panel'): 
        # Image upload option for uploading a reference image for controlnet
        ref_image = gr.Image(label="Upload the reference image", 
                             type='filepath' )
        # Textbox for ControlNet prompt
        img_generation_prompt = gr.Textbox(
            label='ControlNet Prompt',
            info="Enter a Prompt to generate images using ControlNet and Style-aligned", 
            )
    # Button to trigger image generation
    btn = gr.Button("Generate", size='sm')
    # Gallery to display generated images
    gallery = gr.Gallery(label="Style-Aligned ControlNet - Generated images", 
                           elem_id="gallery",
                           columns=5, 
                           rows=1, 
                           object_fit="contain", 
                           height="auto",
                          )
      
    btn.click(fn=style_aligned_controlnet, 
              inputs=[ref_style_prompt, depth_map, ref_image, img_generation_prompt], 
              outputs=[gallery, ref_style_image], 
              api_name="style_aligned_controlnet")


    # Example inputs for the Gradio interface
    gr.Examples(
      examples=[
        ['A poster in a papercut art style.', False, 'example_image/A.png', 'Letter A in a papercut art style.'],
        ['A couple sitting a wooden bench, in colorful clay animation, claymation style.', True, 'example_image/train.jpg', 'A train in colorful clay animation, claymation style.'],
        ['A couple sitting a wooden bench, in clay animation, claymation style.', True, 'example_image/sun.png', 'Sun in clay animation, claymation style.'],
        ['A bull in a low-poly, colorful origami style.', True, 'example_image/whale.png', 'A whale in a low-poly, colorful origami style.'],
        ['A house in a painterly, digital illustration style.', True, 'example_image/camel.jpg', 'A camel in a painterly, digital illustration style.'],
        ['An image in ancient egyptian art style, hieroglyphics style.', True, 'example_image/whale.png', 'A whale in ancient egyptian art style, hieroglyphics style.'],
      ],
      inputs=[ref_style_prompt, depth_map, ref_image, img_generation_prompt], 
      outputs=[gallery, ref_style_image], 
      fn=style_aligned_controlnet,
      )

# Launch the Gradio demo   
demo.launch()