Spaces:
Runtime error
Runtime error
File size: 3,207 Bytes
54fe16b 31a1ff8 e2b5fc2 d6839dc d34759f d6839dc 54fe16b 9e4ba23 af83917 54fe16b 87aa391 54fe16b 31a1ff8 54fe16b 0a1707e 54fe16b b2926ec 54fe16b 87aa391 54fe16b 0a1707e 54fe16b 9ab71e4 54fe16b e9ac030 23521bb 0a1707e 54fe16b d6662ca 54fe16b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 |
import argparse
import os
import spaces
import gradio as gr
import json
from threading import Thread
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer
MAX_LENGTH = 4096
DEFAULT_MAX_NEW_TOKENS = 1024
def parse_args():
parser = argparse.ArgumentParser()
parser.add_argument("--base_model", type=str) # model path
parser.add_argument("--n_gpus", type=int, default=1) # n_gpu
return parser.parse_args()
@spaces.GPU()
def predict(message, history, system_prompt, temperature, max_tokens):
global model, tokenizer, device
instruction = "<|im_start|>system\nA chat between a curious user and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the user's questions.\n<|im_end|>\n"
for human, assistant in history:
instruction += '<|im_start|>user\n' + human + '\n<|im_end|>\n<|im_start|>assistant\n' + assistant
instruction += '\n<|im_start|>user\n' + message + '\n<|im_end|>\n<|im_start|>assistant\n'
problem = [instruction]
stop_tokens = ["<|endoftext|>", "<|im_end|>"]
streamer = TextIteratorStreamer(tokenizer, timeout=100.0, skip_prompt=True, skip_special_tokens=True)
enc = tokenizer(problem, return_tensors="pt", padding=True, truncation=True)
input_ids = enc.input_ids
attention_mask = enc.attention_mask
if input_ids.shape[1] > MAX_LENGTH:
input_ids = input_ids[:, -MAX_LENGTH:]
input_ids = input_ids.to(device)
attention_mask = attention_mask.to(device)
generate_kwargs = dict(
{"input_ids": input_ids, "attention_mask": attention_mask},
streamer=streamer,
do_sample=True,
top_p=0.95,
temperature=0.5,
max_new_tokens=DEFAULT_MAX_NEW_TOKENS,
)
t = Thread(target=model.generate, kwargs=generate_kwargs)
t.start()
outputs = []
for text in streamer:
outputs.append(text)
if text in stop_tokens:
break
print(text)
yield "".join(outputs)
if __name__ == "__main__":
args = parse_args()
tokenizer = AutoTokenizer.from_pretrained("stabilityai/stable-code-instruct-3b")
model = AutoModelForCausalLM.from_pretrained("stabilityai/stable-code-instruct-3b", torch_dtype=torch.bfloat16)
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
model = model.to(device)
gr.ChatInterface(
predict,
title="Stable Code Instruct Chat - Demo",
description="Chat Model Stable Code 3B",
theme="soft",
chatbot=gr.Chatbot(label="Chat History",),
textbox=gr.Textbox(placeholder="input", container=False, scale=7),
retry_btn=None,
undo_btn="Delete Previous",
clear_btn="Clear",
additional_inputs=[
gr.Textbox("A chat between a curious user and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the user's questions.", label="System Prompt"),
gr.Slider(0, 1, 0.9, label="Temperature"),
gr.Slider(100, 2048, 1024, label="Max Tokens"),
],
additional_inputs_accordion_name="Parameters",
).queue().launch()
|