Spaces:
Sleeping
Sleeping
File size: 7,049 Bytes
fc657fc 6fc3759 fc657fc 6fc3759 fc657fc 6fc3759 fc657fc 6fc3759 fc657fc 6fc3759 fc657fc 6fc3759 b37167e fc657fc 6fc3759 fc657fc |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 |
"""
Configuration module for Universal MCP Client
Enhanced with HuggingFace Inference Provider support
"""
import os
from dataclasses import dataclass
from typing import Optional, Dict, List
import logging
# Set up enhanced logging
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(name)s - %(levelname)s - %(message)s')
logger = logging.getLogger(__name__)
@dataclass
class MCPServerConfig:
"""Configuration for an MCP server connection"""
name: str
url: str
description: str
space_id: Optional[str] = None
class AppConfig:
"""Application configuration settings"""
# API Configuration
ANTHROPIC_API_KEY = os.getenv("ANTHROPIC_API_KEY")
HF_TOKEN = os.getenv("HF_TOKEN")
# Model Configuration
CLAUDE_MODEL = "claude-sonnet-4-20250514"
MAX_TOKENS = 2048
# MCP Configuration
MCP_BETA_VERSION = "mcp-client-2025-04-04"
MCP_TIMEOUT_SECONDS = 20.0
# UI Configuration
GRADIO_THEME = "citrus"
DEBUG_MODE = True
# File Support
SUPPORTED_IMAGE_EXTENSIONS = ['.png', '.jpg', '.jpeg', '.gif', '.webp']
SUPPORTED_AUDIO_EXTENSIONS = ['.mp3', '.wav', '.ogg', '.m4a', '.flac']
SUPPORTED_VIDEO_EXTENSIONS = ['.mp4', '.avi', '.mov']
SUPPORTED_DOCUMENT_EXTENSIONS = ['.pdf', '.txt', '.docx']
# Inference Providers Configuration
INFERENCE_PROVIDERS = {
"sambanova": {
"name": "SambaNova",
"description": "Ultra-fast inference on optimized hardware",
"supports_tools": True,
"models": [
"meta-llama/Llama-3.3-70B-Instruct",
"deepseek-ai/DeepSeek-R1-0528",
"meta-llama/Llama-4-Maverick-17B-128E-Instruct",
"intfloat/e5-mistral-7b-instruct"
]
},
"together": {
"name": "Together AI",
"description": "High-performance inference for open models",
"supports_tools": True,
"models": [
"deepseek-ai/DeepSeek-V3-0324",
"Qwen/Qwen2.5-72B-Instruct",
"meta-llama/Llama-3.1-8B-Instruct",
"black-forest-labs/FLUX.1-dev"
]
},
"replicate": {
"name": "Replicate",
"description": "Run AI models in the cloud",
"supports_tools": True,
"models": [
"meta/llama-2-70b-chat",
"mistralai/mixtral-8x7b-instruct-v0.1",
"black-forest-labs/flux-schnell"
]
},
"groq": {
"name": "Groq",
"description": "Ultra-low latency LPU inference",
"supports_tools": True,
"models": [
"meta-llama/Llama-4-Scout-17B-16E-Instruct",
"llama-3.1-70b-versatile",
"mixtral-8x7b-32768"
]
},
"fal-ai": {
"name": "fal.ai",
"description": "Fast AI model inference",
"supports_tools": True,
"models": [
"meta-llama/Llama-3.1-8B-Instruct",
"black-forest-labs/flux-pro"
]
},
"fireworks-ai": {
"name": "Fireworks AI",
"description": "Production-ready inference platform",
"supports_tools": True,
"models": [
"accounts/fireworks/models/llama-v3p1-70b-instruct",
"accounts/fireworks/models/mixtral-8x7b-instruct"
]
},
"cohere": {
"name": "Cohere",
"description": "Enterprise-grade language AI",
"supports_tools": True,
"models": [
"command-r-plus",
"command-r",
"command"
]
},
"hf-inference": {
"name": "HF Inference",
"description": "Hugging Face serverless inference",
"supports_tools": True,
"models": [
"meta-llama/Llama-3.2-11B-Vision-Instruct",
"microsoft/DialoGPT-medium",
"intfloat/multilingual-e5-large"
]
}
}
@classmethod
def get_all_media_extensions(cls):
"""Get all supported media file extensions"""
return (cls.SUPPORTED_IMAGE_EXTENSIONS +
cls.SUPPORTED_AUDIO_EXTENSIONS +
cls.SUPPORTED_VIDEO_EXTENSIONS)
@classmethod
def is_image_file(cls, file_path: str) -> bool:
"""Check if file is an image"""
return any(ext in file_path.lower() for ext in cls.SUPPORTED_IMAGE_EXTENSIONS)
@classmethod
def is_audio_file(cls, file_path: str) -> bool:
"""Check if file is an audio file"""
return any(ext in file_path.lower() for ext in cls.SUPPORTED_AUDIO_EXTENSIONS)
@classmethod
def is_video_file(cls, file_path: str) -> bool:
"""Check if file is a video file"""
return any(ext in file_path.lower() for ext in cls.SUPPORTED_VIDEO_EXTENSIONS)
@classmethod
def is_media_file(cls, file_path: str) -> bool:
"""Check if file is any supported media type"""
return any(ext in file_path.lower() for ext in cls.get_all_media_extensions())
@classmethod
def get_provider_models(cls, provider: str) -> List[str]:
"""Get available models for a specific provider"""
return cls.INFERENCE_PROVIDERS.get(provider, {}).get("models", [])
@classmethod
def get_all_providers(cls) -> Dict[str, Dict]:
"""Get all available inference providers"""
return cls.INFERENCE_PROVIDERS
# Check for dependencies
try:
import httpx
HTTPX_AVAILABLE = True
except ImportError:
HTTPX_AVAILABLE = False
logger.warning("httpx not available - file upload functionality limited")
try:
from huggingface_hub import InferenceClient
HF_INFERENCE_AVAILABLE = True
except ImportError:
HF_INFERENCE_AVAILABLE = False
logger.warning("huggingface_hub not available - inference provider functionality limited")
# CSS Configuration
CUSTOM_CSS = """
/* Hide Gradio footer */
footer {
display: none !important;
}
/* Make chatbot expand to fill available space */
.gradio-container {
height: 100vh !important;
}
/* Ensure proper flex layout */
.main-content {
display: flex;
flex-direction: column;
height: 100%;
}
/* Input area stays at bottom with minimal padding */
.input-area {
margin-top: auto;
padding-top: 0.25rem !important;
padding-bottom: 0 !important;
margin-bottom: 0 !important;
}
/* Reduce padding around chatbot */
.chatbot {
margin-bottom: 0 !important;
padding-bottom: 0 !important;
}
/* Provider selection styling */
.provider-selection {
border: 1px solid #e0e0e0;
border-radius: 8px;
padding: 10px;
margin: 5px 0;
}
.anthropic-config {
background-color: #f8f9fa;
border-left: 4px solid #28a745;
}
.hf-config {
background-color: #fff8e1;
border-left: 4px solid #ff9800;
}
""" |